find-A-n-1-2-1-1-x-1-x-2-1-x-n-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 37271 by abdo.msup.com last updated on 11/Jun/18 findAn=∫12(1+1x+1x2+…+1xn)2dx Commented by prof Abdo imad last updated on 18/Jun/18 letai=1xiwith0⩽i⩽n⇒(1+1x+1x2+….+1xn)2=(∑i=0nai)2=∑i=0nai2+2∑0⩽i<j⩽nai.aj=∑i=0n1x2i+2∑0⩽i<j⩽n1xi+j⇒An=∫12(∑i=0n1x2i)dx+2∫12∑0⩽i<j⩽n1xi+jdx=∑i=0n∫12x−2idx+2∑0⩽i<j⩽n∫12x−(i+j)dx∑i=0n1−2i+1[x−2i+1]12+2∑0⩽i<j⩽n11−(i+j)[x1−(i+j)]12=−∑i=0n12i−1{2−2i+1−1}−∑0⩽i<j⩽n1i+j−1{21−(i+j)−1} Commented by math khazana by abdo last updated on 18/Jun/18 An=∑i=0n1−2−2i+12i−1+∑0⩽i<j⩽n1−21−i−ji+j−1. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-f-x-e-2x-ln-1-x-developp-f-at-integr-serie-Next Next post: 1-x-2-3-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.