Menu Close

find-A-n-1-2-1-1-x-1-x-2-1-x-n-2-dx-




Question Number 37271 by abdo.msup.com last updated on 11/Jun/18
find  A_n =∫_1 ^2 ( 1 +(1/x) +(1/x^2 ) +...+(1/x^n ))^2 dx
findAn=12(1+1x+1x2++1xn)2dx
Commented by prof Abdo imad last updated on 18/Jun/18
let  a_i = (1/x^i )  with 0≤i≤n ⇒  (1+(1/x) +(1/x^2 ) +....+(1/x^n ))^2  =(Σ_(i=0) ^n  a_i )^2   = Σ_(i=0) ^n  a_i ^2    +2 Σ_(0≤i<j≤n) a_i .a_j   =Σ_(i=0) ^n   (1/x^(2i) ) +2 Σ_(0≤i<j≤n)   (1/x^(i+j) ) ⇒  A_n  = ∫_1 ^2  (Σ_(i=0) ^n  (1/x^(2i) ))dx +2 ∫_1 ^2 Σ_(0≤i<j≤n)  (1/x^(i+j) )dx  =Σ_(i=0) ^n  ∫_1 ^2    x^(−2i) dx +2 Σ_(0≤i<j≤n) ∫_1 ^2  x^(−(i+j)) dx  Σ_(i=0) ^n  (1/(−2i+1))[ x^(−2i+1) ]_1 ^2   +2 Σ_(0≤i<j≤n)  (1/(1−(i+j)))[ x^(1−(i+j)) ]_1 ^2   =−Σ_(i=0) ^n   (1/(2i−1)){ 2^(−2i+1)  −1}  −Σ_(0≤i<j≤n)  (1/(i+j−1)){ 2^(1−(i+j))  −1}
letai=1xiwith0in(1+1x+1x2+.+1xn)2=(i=0nai)2=i=0nai2+20i<jnai.aj=i=0n1x2i+20i<jn1xi+jAn=12(i=0n1x2i)dx+2120i<jn1xi+jdx=i=0n12x2idx+20i<jn12x(i+j)dxi=0n12i+1[x2i+1]12+20i<jn11(i+j)[x1(i+j)]12=i=0n12i1{22i+11}0i<jn1i+j1{21(i+j)1}
Commented by math khazana by abdo last updated on 18/Jun/18
A_n = Σ_(i=0) ^n  ((1−2^(−2i+1) )/(2i−1))  +Σ_(0≤i<j≤n) ((1−2^(1−i−j) )/(i+j−1))  .
An=i=0n122i+12i1+0i<jn121iji+j1.

Leave a Reply

Your email address will not be published. Required fields are marked *