Menu Close

find-A-n-1-n-1-x-x-arctan-x-1-x-dx-then-calculate-lim-n-A-n-




Question Number 37813 by prof Abdo imad last updated on 17/Jun/18
find A_n   = ∫_(1/n) ^1   x(√x)arctan(x+(1/x))dx  then calculate lim_(n→+∞)  A_n .
findAn=1n1xxarctan(x+1x)dxthencalculatelimn+An.
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Jun/18
∫tan^(−1) (x+(1/x))×x^(3/2) dx  tan^(−1) (x+(1/x))×(x^(5/2) /(5/2))−∫(1/(1+x^2 +2+(1/x^2 )))×(x^(5/2) /(5/2))dx  do−(2/5)∫(x^(5/2) /(x^2 +(1/x^2 )+3))dx  d0−(2/5)∫(x^(9/2) /(x^4 +3x^2 +1))dx  x=t^2    dx=2tdt  do−(2/5)∫((t^(2×(9/2)) ×2tdt)/(t^8 +3t^4 +1))  do−(4/5)∫(t^(10) /(t^8 +3t^4 +1))dt  do−(4/5)∫((t^(10) +3t^6 +t^2 −3t^6 −t^2 )/(t^8 +3t^4 +1))dt  do−(4/5)∫t^2 dt+(4/5)∫((3t^6 +t^2 )/(t^8 +3t^4 +1))dt  do−(4/5)∫t^2 dt+(4/5)∫((3t^2 +(1/t^2 ))/(t^4 +3+(1/t^4 )))  do−(4/5)∫t^2 dt+(4/5)∫((3(t^2 +(1/t^2 ))−(2/t^2 ))/((t^2 +(1/t^2 ))^2 +1))      contd
tan1(x+1x)×x32dxtan1(x+1x)×x525211+x2+2+1x2×x5252dxdo25x52x2+1x2+3dxd025x92x4+3x2+1dxx=t2dx=2tdtdo25t2×92×2tdtt8+3t4+1do45t10t8+3t4+1dtdo45t10+3t6+t23t6t2t8+3t4+1dtdo45t2dt+453t6+t2t8+3t4+1dtdo45t2dt+453t2+1t2t4+3+1t4do45t2dt+453(t2+1t2)2t2(t2+1t2)2+1contd

Leave a Reply

Your email address will not be published. Required fields are marked *