find-A-n-1-n-1-x-x-arctan-x-1-x-dx-then-calculate-lim-n-A-n- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 37813 by prof Abdo imad last updated on 17/Jun/18 findAn=∫1n1xxarctan(x+1x)dxthencalculatelimn→+∞An. Answered by tanmay.chaudhury50@gmail.com last updated on 18/Jun/18 ∫tan−1(x+1x)×x32dxtan−1(x+1x)×x5252−∫11+x2+2+1x2×x5252dxdo−25∫x52x2+1x2+3dxd0−25∫x92x4+3x2+1dxx=t2dx=2tdtdo−25∫t2×92×2tdtt8+3t4+1do−45∫t10t8+3t4+1dtdo−45∫t10+3t6+t2−3t6−t2t8+3t4+1dtdo−45∫t2dt+45∫3t6+t2t8+3t4+1dtdo−45∫t2dt+45∫3t2+1t2t4+3+1t4do−45∫t2dt+45∫3(t2+1t2)−2t2(t2+1t2)2+1contd Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-103346Next Next post: let-I-0-e-x-cos-2-pi-x-dx-and-J-0-e-x-sin-2-pi-x-dx-1-calculate-I-J-and-I-J-2-find-the-values-of-I-and-J- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.