Menu Close

find-a-n-in-terms-of-n-I-can-t-find-it-a-1-1-a-2-4-a-3-a-2-4-2-2-1-2-2-a-4-a-3-4-2-2-1-2-2-3-2-1-3-2-a-5-a-4-4-2-2-1-2-2-3-2-1-3-2-4-2-1-4-2-n-2-




Question Number 98673 by MJS last updated on 15/Jun/20
find a_n  in terms of n  (I can′t find it...)  a_1 =1; a_2 =4  a_3 =a_2 ×4×((2^2 −1)/2^2 )  a_4 =a_3 ×4×((2^2 −1)/2^2 )×((3^2 −1)/3^2 )  a_5 =a_4 ×4×((2^2 −1)/2^2 )×((3^2 −1)/3^2 )×((4^2 −1)/4^2 )  ...  n≥2: a_(n+1) =4a_n Π_(k=2) ^n ((k^2 −1)/k^2 )
findanintermsofn(Icantfindit)a1=1;a2=4a3=a2×4×22122a4=a3×4×22122×32132a5=a4×4×22122×32132×42142n2:an+1=4annk=2k21k2
Answered by  M±th+et+s last updated on 16/Jun/20
sir what do you think about it  Σ_(k=2) ^n ((k^2 −1)/k^2 )=(1/(2+((a_n −1)/(an+1))))
sirwhatdoyouthinkaboutitnk=2k21k2=12+an1an+1
Answered by maths mind last updated on 16/Jun/20
⇔(a_(n+1) /a_n )=4.Π_(k=2) ^n .(((k−1)(k+1))/(k.k)).  Π_(k=2) ^n ((k+1)/k)=((n+1)/2)  Π_(k=2) ^n ((k−1)/k)=(1/n)  ⇒(a_(n+1) /a_n )=((2(n+1))/n)  ⇒Π_(j=1) ^(m−1) (a_(j+1) /a_j )=Π_(j=1) ^(m−1) ((2(n+1))/n)⇒(a_m /a_1 )=2^(m−1) .m  ⇒a_m =a_1 .m.2^(m−1)
an+1an=4.nk=2.(k1)(k+1)k.k.nk=2k+1k=n+12nk=2k1k=1nan+1an=2(n+1)nm1j=1aj+1aj=m1j=12(n+1)nama1=2m1.mam=a1.m.2m1
Commented by MJS last updated on 16/Jun/20
great, thank you! I hadn′t thought of this
great,thankyou!Ihadntthoughtofthis

Leave a Reply

Your email address will not be published. Required fields are marked *