find-a-particular-solution-to-the-equation-y-y-x-sin-y-x-with-original-condition-y-1-pi-2- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 96192 by 1549442205 last updated on 30/May/20 findaparticularsolutiontotheequationy′=yx+sinyxwithoriginalconditiony(1)=π2 Commented by john santu last updated on 30/May/20 setv=yx⇒dydx=v+xdvdxv+xdvdx=v+sinvxdvdx=sinv⇒∫dvsinv=∫dxx∫cscvdv=ln(x)+cln(cscv−cotv)=lnCxcscv−cotv=Cx1−cos(yx)sin(yx)=Cx1−cos(yx)=Cxsin(yx) Commented by 1549442205 last updated on 11/Jun/20 ThisisanotherwayPutyx=t⇒y=tx⇒dy=xdt+tdx.Hence,xdt+tdx=(t+sint)dx⇒xdt=sintdx⇒dtsint=dxx.Integratetwosideswegetln∣tan(t2)∣=ln∣x∣+lnC.Fromthat∣t2=arctan(Cx)⇒y=2x.arctan(Cx)Usingtheoriginalconditionwegetπ2=2arctanC⇒C=1.Thus,theparticularsolutionhasform:\boldsymboly=2\boldsymbolx.\boldsymbolarctanx Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-x-e-x-2-2-Next Next post: let-f-x-ln-cosx-developp-f-at-fourier-serie- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.