Menu Close

find-a-particular-solution-to-the-equation-y-y-x-sin-y-x-with-original-condition-y-1-pi-2-




Question Number 96192 by 1549442205 last updated on 30/May/20
find a particular solution to the equation  y′ =(y/x)+sin(y/x) with original condition  y(1)=(π/2)
findaparticularsolutiontotheequationy=yx+sinyxwithoriginalconditiony(1)=π2
Commented by john santu last updated on 30/May/20
set v =(y/x) ⇒(dy/dx) = v +x (dv/dx)   v+x (dv/dx) = v +sin v   x (dv/dx) = sin v ⇒ ∫ (dv/(sin v)) = ∫ (dx/x)  ∫ csc v dv = ln(x) + c  ln (csc v−cot v) = ln Cx  csc v −cot v = Cx  ((1−cos ((y/x)))/(sin ((y/x)))) = Cx   1−cos ((y/x)) = Cx sin ((y/x))
setv=yxdydx=v+xdvdxv+xdvdx=v+sinvxdvdx=sinvdvsinv=dxxcscvdv=ln(x)+cln(cscvcotv)=lnCxcscvcotv=Cx1cos(yx)sin(yx)=Cx1cos(yx)=Cxsin(yx)
Commented by 1549442205 last updated on 11/Jun/20
This is an other way  Put (y/x)=t⇒y=tx⇒dy=xdt+tdx.Hence,  xdt+tdx=(t+sint)dx⇒xdt=sintdx  ⇒(dt/(sint))=(dx/x).Integrate two sides we get  ln∣tan((t/2))∣=ln∣x∣+lnC.From that∣  (t/2)=arctan(Cx)⇒y=2x.arctan(Cx)  Using the original condition we get  (π/2)=2arctanC⇒C=1.Thus,the   particular solution has form:  y=2x.arctanx
ThisisanotherwayPutyx=ty=txdy=xdt+tdx.Hence,xdt+tdx=(t+sint)dxxdt=sintdxdtsint=dxx.Integratetwosideswegetlntan(t2)∣=lnx+lnC.Fromthatt2=arctan(Cx)y=2x.arctan(Cx)Usingtheoriginalconditionwegetπ2=2arctanCC=1.Thus,theparticularsolutionhasform:\boldsymboly=2\boldsymbolx.\boldsymbolarctanx

Leave a Reply

Your email address will not be published. Required fields are marked *