Menu Close

Find-a-R-Such-that-x-1-16-x-2-16-x-3-16-30-Where-x-1-x-2-x-3-are-the-roots-of-the-equation-x-3-ax-1-0-




Question Number 178476 by Shrinava last updated on 17/Oct/22
Find  a∈R  Such that  x_1 ^(16)  + x_2 ^(16)  + x_3 ^(16)  = 30  Where  x_1 ,x_2 ,x_3 − are the roots of the  equation:  x^3  + ax + 1 = 0
FindaRSuchthatx116+x216+x316=30Wherex1,x2,x3aretherootsoftheequation:x3+ax+1=0
Answered by Frix last updated on 17/Oct/22
x^3 +ax+1=0  ⇒  x_k =((2(√(−3a)))/3)sin ((2πk+sin^(−1)  ((3(√3))/(2(−a)^(3/2) )))/3) with k=1, 2, 3  let α=((3(√3))/(2(−a)^(3/2) ))  x_k =((2(√(−3a)))/3)sin ((2πk+sin^(−1)  α)/3)  x_k ^(16) =((65536a^8 )/(6561))sin^(16)  ((2πk+sin^(−1)  α)/3)  sin ((2π+sin^(−1)  α)/3) =(((√3)cos ((sin^(−1)  α)/3) −sin ((sin^(−1)  α)/3))/2)=(((√3)c−s)/2)  sin ((4π+sin^(−1)  α)/3) =−(((√3)cos ((sin^(−1)  α)/3) +sin ((sin^(−1)  α)/3))/2)=−(((√3)c+s)/2)  sin ((6π+sin^(−1)  α)/3) =sin ((sin^(−1)  α)/3) =s  ((((√3)c−s)/2))^(16) +(−(((√3)c+s)/2))^(16) +s^(16) =  (with c=(√(1−s^2 )))  =((45s^(12) )/2)−((135s^(10) )/2)+((1215s^8 )/(16))−((1701s^6 )/(64))−((5103s^4 )/(512))+((6561s^2 )/(1024))+((6561)/(32768))=  (after some work)  =((360cos (12×((sin^(−1)  α)/3)) −13104cos (6×((sin^(−1)  α)/3)) +19305)/(32768))=  =((45α^4 )/(512))+((729α^2 )/(1024))+((6561)/(32768))=  =((6561)/(32768))−((19683)/(4086a^3 ))+((32805)/(8192a^6 ))  multiplied with ((65536a^8 )/(6561))  x_1 ^(16) +x_2 ^(16) +x_3 ^(16) =2a^8 −48a^5 +40a^2 =30  we need to solve  a^8 −24a^5 +20a^2 −15=0  I can only approximate  a_1 ≈−.718638134  a_2 ≈2.85282288  no other real solutions
x3+ax+1=0xk=23a3sin2πk+sin1332(a)3/23withk=1,2,3letα=332(a)3/2xk=23a3sin2πk+sin1α3xk16=65536a86561sin162πk+sin1α3sin2π+sin1α3=3cossin1α3sinsin1α32=3cs2sin4π+sin1α3=3cossin1α3+sinsin1α32=3c+s2sin6π+sin1α3=sinsin1α3=s(3cs2)16+(3c+s2)16+s16=(withc=1s2)=45s122135s102+1215s8161701s6645103s4512+6561s21024+656132768=(aftersomework)=360cos(12×sin1α3)13104cos(6×sin1α3)+1930532768==45α4512+729α21024+656132768==656132768196834086a3+328058192a6multipliedwith65536a86561x116+x216+x316=2a848a5+40a2=30weneedtosolvea824a5+20a215=0Icanonlyapproximatea1.718638134a22.85282288nootherrealsolutions
Commented by Shrinava last updated on 17/Oct/22
Sorry professor,  x_1 ^(16) +x_2 ^(16) +x_3 ^(16) =90
Sorryprofessor,x116+x216+x316=90
Commented by Ar Brandon last updated on 17/Oct/22
Greetings, old man �� I already began to feel your absence and was missing you already, dear Sir�� Little did I know that...��
Commented by Frix last updated on 17/Oct/22
x_1 ^(16) +x_2 ^(16) +x_3 ^(16) =2a^8 −48a^5 +40a^2 =90  a^8 −24a^5 +20a^2 −45=0  a_1 =−1  a_2 ≈2.85944202  no other real solutions
x116+x216+x316=2a848a5+40a2=90a824a5+20a245=0a1=1a22.85944202nootherrealsolutions

Leave a Reply

Your email address will not be published. Required fields are marked *