Menu Close

find-a-reduction-formulae-for-I-n-1-0-x-n-1-x-2-dx-




Question Number 93299 by Rio Michael last updated on 12/May/20
find a reduction formulae for I_n  = ∫_(−1) ^0 x^n (1 + x)^2  dx
findareductionformulaeforIn=10xn(1+x)2dx
Commented by mathmax by abdo last updated on 12/May/20
I_n =∫_(−1) ^0  x^n (1+x)^2  dx ⇒I_n =_(x=−t)  ∫_0 ^1 (−1)^n  t^n (1−t)^2  dt  =(−1)^n  ∫_0 ^1  t^n (t−1)^2 dt  by parts we get  ∫_0 ^1  t^n (t−1)^2 dt =[(1/(n+1))t^(n+1) (t−1)^2 ]_0 ^1  −(2/(n+1))∫_0 ^1 t^(n+1)  (t−1)dt  =−(2/(n+1)) {  [(1/(n+2))t^(n+2) (t−1)]_0 ^1  −(1/(n+2))∫_0 ^1  t^(n+2)  dt}  =−(2/(n+1))(−(1/(n+2)))×(1/(n+3)) =(2/((n+1)(n+2)(n+3))) ⇒  I_n =((2(−1)^n )/((n+1)(n+2)(n+3)))
In=10xn(1+x)2dxIn=x=t01(1)ntn(1t)2dt=(1)n01tn(t1)2dtbypartsweget01tn(t1)2dt=[1n+1tn+1(t1)2]012n+101tn+1(t1)dt=2n+1{[1n+2tn+2(t1)]011n+201tn+2dt}=2n+1(1n+2)×1n+3=2(n+1)(n+2)(n+3)In=2(1)n(n+1)(n+2)(n+3)
Commented by Rio Michael last updated on 12/May/20
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *