Menu Close

find-a-simple-expression-for-y-sin-1-sin-x-x-R-and-x-in-rad-




Question Number 128546 by mr W last updated on 08/Jan/21
find a simple expression for  y=sin^(−1) (sin x)  x∈R and x in rad.
findasimpleexpressionfory=sin1(sinx)xRandxinrad.
Commented by liberty last updated on 08/Jan/21
sin x = sin y ; y = x+2kπ   where −(π/2)<y<(π/2)
sinx=siny;y=x+2kπwhereπ2<y<π2
Commented by mr W last updated on 08/Jan/21
example:  x=5  how do you get y=f(5) with your  formula?
example:x=5howdoyougety=f(5)withyourformula?
Commented by john_santu last updated on 08/Jan/21
do you meant 5 in degress? or radiant−?
doyoumeant5indegress?orradiant?
Commented by Olaf last updated on 08/Jan/21
f(5) = (−1)^(⌊(5/π)+(1/2)⌋) (5−⌊(5/π)+(1/2)⌋π)  ⌊(5/π)+(1/2)⌋ ≈ ⌊2,091⌋ = 2  ⇒ f(5) = (−1)^2 (5−2π) = 5−2π
f(5)=(1)5π+12(55π+12π)5π+122,091=2f(5)=(1)2(52π)=52π
Answered by Olaf last updated on 08/Jan/21
∀x∈R, ∃k∈Z \ x−kπ ∈[−(π/2),+(π/2)[  ⇔ kπ ≤ x+(π/2) < (k+1)π  ⇔ k ≤ (x/π)+(1/2) < k+1  k = ⌊(x/π)+(1/2)⌋ (integer part)  and ∀θ∈R, ∀q∈Z, sin(θ+qπ) = (−1)^q sinθ  ⇒ sinx = sin(x−kπ+kπ) = (−1)^k sin(x−kπ)  ⇒ arcsin(sinx) = arcsin((−1)^k sin(x−kπ))  = (−1)^k arcsin(sin(x−kπ))  and x−kπ ∈[−(π/2),+(π/2)[  ⇒ arcsin(sinx) =(−1)^k (x−kπ)    Formula for arcsin(sinx) :  arcsin(sinx) = (−1)^(⌊(x/π)+(1/2)⌋) (x−⌊(x/π)+(1/2)⌋π)
xR,kZxkπ[π2,+π2[kπx+π2<(k+1)πkxπ+12<k+1k=xπ+12(integerpart)andθR,qZ,sin(θ+qπ)=(1)qsinθsinx=sin(xkπ+kπ)=(1)ksin(xkπ)arcsin(sinx)=arcsin((1)ksin(xkπ))=(1)karcsin(sin(xkπ))andxkπ[π2,+π2[arcsin(sinx)=(1)k(xkπ)Formulaforarcsin(sinx):arcsin(sinx)=(1)xπ+12(xxπ+12π)
Commented by mr W last updated on 08/Jan/21
thanks alot!
thanksalot!

Leave a Reply

Your email address will not be published. Required fields are marked *