Question Number 33883 by math khazana by abdo last updated on 26/Apr/18
$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{xsin}^{\mathrm{2}} {t}\right){dt} \\ $$$${with}\:\mid{x}\mid<\mathrm{1}. \\ $$
Commented by math khazana by abdo last updated on 01/May/18
$${we}\:{have}\:{f}^{'} \left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{sin}^{\mathrm{2}} {t}}{\mathrm{1}+{xsin}^{\mathrm{2}} {t}}{dt}\:\:{and}\:{for}\:{x}\neq\mathrm{0} \\ $$$${f}^{'} \left({x}\right)\:=\frac{\mathrm{1}}{{x}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}+{xsin}^{\mathrm{2}} {t}−\mathrm{1}}{\mathrm{1}+{xsin}^{\mathrm{2}} {t}}{dt} \\ $$$$=\:\frac{\pi}{\mathrm{2}{x}}\:\:−\frac{\mathrm{1}}{{x}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{dt}}{\mathrm{1}+{x}\:{sin}^{\mathrm{2}} {t}}\:\:{but}\: \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{dt}}{\mathrm{1}+{x}\:{sin}^{\mathrm{2}} {t}}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{dt}}{\mathrm{1}+{x}\:\frac{\mathrm{1}−{cos}\left(\mathrm{2}{t}\right)}{\mathrm{2}}} \\ $$$$=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{\mathrm{2}{dt}}{\mathrm{2}\:+{x}\:−{x}\:{cos}\left(\mathrm{2}{t}\right)}\:=_{\mathrm{2}{t}={u}} \:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\:\:\frac{{du}}{\mathrm{2}+{x}\:−{x}\:{cosu}} \\ $$$${also}\:{ch}\:{tan}\left(\frac{{u}}{\mathrm{2}}\right)={t}\:{give} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{dt}}{\mathrm{1}+{x}\:{sin}^{\mathrm{2}} {t}}\:=\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}+{x}−{x}\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}\:\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{2}{dt}}{\left(\mathrm{2}+{x}\right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\:−{x}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{2}{dt}}{\mathrm{2}+{x}\:\:+\left(\mathrm{2}+{x}\right){t}^{\mathrm{2}} \:\:−{x}\:\:+{xt}^{\mathrm{2}} } \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\frac{\mathrm{2}{dt}}{\mathrm{2}\:\:+\:\mathrm{2}\left(\mathrm{1}+{x}\right){t}^{\mathrm{2}} }\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{{dt}}{\mathrm{1}+\left(\mathrm{1}+{x}\right){t}^{\mathrm{2}} } \\ $$$$=_{\sqrt{\mathrm{1}+{x}}{t}={u}} \:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }\:\frac{{du}}{\:\sqrt{\mathrm{1}+{x}}}\:=\:\frac{\pi}{\mathrm{2}\sqrt{\mathrm{1}+{x}}}\:\:\Rightarrow \\ $$$${f}^{'} \left({x}\right)\:=\:\frac{\pi}{\mathrm{2}{x}}\:−\frac{\mathrm{1}}{{x}}\:\frac{\pi}{\mathrm{2}\sqrt{\mathrm{1}+{x}}}\:=\:\frac{\pi}{\mathrm{2}{x}}\left(\:\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}}}\right)\:\Rightarrow \\ $$$${f}\left({x}\right)=\frac{\pi}{\mathrm{2}}{ln}\mid{x}\mid\:−\frac{\pi}{\mathrm{2}}\int_{.} ^{{x}} \:\:\:\:\frac{{dt}}{{t}\sqrt{\mathrm{1}+{t}}}\:\:+\lambda \\ $$$$\int\:\:\:\:\frac{{dt}}{{t}\sqrt{\mathrm{1}+{t}}}\:=_{\sqrt{\mathrm{1}+{t}}={u}} \int\:\:\:\:\frac{\mathrm{2}{udu}}{\left({u}^{\mathrm{2}} −\mathrm{1}\right){u}} \\ $$$$=\:\int\:\:\:\:\:\frac{\mathrm{2}{du}}{\left({u}+\mathrm{1}\right)\left({u}−\mathrm{1}\right)}\:=\int\:\left(\frac{\mathrm{1}}{{u}−\mathrm{1}}\:−\frac{\mathrm{1}}{{u}+\mathrm{1}}\right){du} \\ $$$$={ln}\mid\frac{{u}−\mathrm{1}}{{u}+\mathrm{1}}\mid\:={ln}\left(\frac{\sqrt{\mathrm{1}+{x}}−\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}}\:+\mathrm{1}}\right)\:\Rightarrow \\ $$$${f}\left({x}\right)\:=\:\frac{\pi}{\mathrm{2}}{ln}\mid{x}\mid\:−\frac{\pi}{\mathrm{2}}{ln}\left(\frac{\sqrt{\mathrm{1}+{x}}−\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}}\:+\mathrm{1}}\right)\:+\lambda \\ $$$$\lambda\:={lim}_{{x}\rightarrow\mathrm{1}} \left({f}\left({x}\right)\:−\frac{\pi}{\mathrm{2}}{ln}\mid{x}\mid\:+\frac{\pi}{\mathrm{2}}{ln}\left(\frac{\sqrt{\mathrm{1}+{x}}−\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}}+\mathrm{1}}\right)\right) \\ $$$$={f}\left(\mathrm{1}\right)\:+\frac{\pi}{\mathrm{2}}{ln}\left(\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\:\sqrt{\mathrm{2}}+\mathrm{1}}\right) \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left(\mathrm{1}+{sin}^{\mathrm{2}} {t}\right){dt}\:+\frac{\pi}{\mathrm{2}}{ln}\left(\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\:\sqrt{\mathrm{2}}+\mathrm{1}}\right)\:. \\ $$$$ \\ $$