find-a-simple-form-of-f-x-0-pi-2-ln-1-xsin-2-t-dt-with-x-lt-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 33883 by math khazana by abdo last updated on 26/Apr/18 findasimpleformoff(x)=∫0π2ln(1+xsin2t)dtwith∣x∣<1. Commented by math khazana by abdo last updated on 01/May/18 wehavef′(x)=∫0π2sin2t1+xsin2tdtandforx≠0f′(x)=1x∫0π21+xsin2t−11+xsin2tdt=π2x−1x∫0π2dt1+xsin2tbut∫0π2dt1+xsin2t=∫0π2dt1+x1−cos(2t)2=∫0π22dt2+x−xcos(2t)=2t=u∫0πdu2+x−xcosualsochtan(u2)=tgive∫0π2dt1+xsin2t=∫0+∞12+x−x1−t21+t22dt1+t2=∫0∞2dt(2+x)(1+t2)−x(1−t2)=∫0∞2dt2+x+(2+x)t2−x+xt2=∫0∞2dt2+2(1+x)t2=∫0∞dt1+(1+x)t2=1+xt=u∫0∞11+u2du1+x=π21+x⇒f′(x)=π2x−1xπ21+x=π2x(1−11+x)⇒f(x)=π2ln∣x∣−π2∫.xdtt1+t+λ∫dtt1+t=1+t=u∫2udu(u2−1)u=∫2du(u+1)(u−1)=∫(1u−1−1u+1)du=ln∣u−1u+1∣=ln(1+x−11+x+1)⇒f(x)=π2ln∣x∣−π2ln(1+x−11+x+1)+λλ=limx→1(f(x)−π2ln∣x∣+π2ln(1+x−11+x+1))=f(1)+π2ln(2−12+1)=∫0π2ln(1+sin2t)dt+π2ln(2−12+1). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: comment-creer-un-tableau-de-variation-a-partir-de-l-application-Next Next post: developp-at-integr-serie-f-x-0-x-sin-t-2-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.