Menu Close

find-a-simple-form-of-f-x-0-pi-2-ln-1-xsin-2-t-dt-with-x-lt-1-




Question Number 33883 by math khazana by abdo last updated on 26/Apr/18
find a simple form of f(x)=∫_0 ^(π/2) ln(1+xsin^2 t)dt  with ∣x∣<1.
findasimpleformoff(x)=0π2ln(1+xsin2t)dtwithx∣<1.
Commented by math khazana by abdo last updated on 01/May/18
we have f^′ (x)= ∫_0 ^(π/2)      ((sin^2 t)/(1+xsin^2 t))dt  and for x≠0  f^′ (x) =(1/x) ∫_0 ^(π/2)  ((1+xsin^2 t−1)/(1+xsin^2 t))dt  = (π/(2x))  −(1/x) ∫_0 ^(π/2)      (dt/(1+x sin^2 t))  but   ∫_0 ^(π/2)     (dt/(1+x sin^2 t)) = ∫_0 ^(π/2)     (dt/(1+x ((1−cos(2t))/2)))  = ∫_0 ^(π/2)      ((2dt)/(2 +x −x cos(2t))) =_(2t=u)  ∫_0 ^π        (du/(2+x −x cosu))  also ch tan((u/2))=t give  ∫_0 ^(π/2)      (dt/(1+x sin^2 t)) = ∫_0 ^(+∞)       (1/(2+x−x((1−t^2 )/(1+t^2 ))))  ((2dt)/(1+t^2 ))  = ∫_0 ^∞     ((2dt)/((2+x)(1+t^2 ) −x(1−t^2 )))  =∫_0 ^∞     ((2dt)/(2+x  +(2+x)t^2   −x  +xt^2 ))  = ∫_0 ^∞        ((2dt)/(2  + 2(1+x)t^2 )) = ∫_0 ^∞       (dt/(1+(1+x)t^2 ))  =_((√(1+x))t=u)   ∫_0 ^∞      (1/(1+u^2 )) (du/( (√(1+x)))) = (π/(2(√(1+x))))  ⇒  f^′ (x) = (π/(2x)) −(1/x) (π/(2(√(1+x)))) = (π/(2x))( 1−(1/( (√(1+x))))) ⇒  f(x)=(π/2)ln∣x∣ −(π/2)∫_. ^x     (dt/(t(√(1+t))))  +λ  ∫    (dt/(t(√(1+t)))) =_((√(1+t))=u) ∫    ((2udu)/((u^2 −1)u))  = ∫     ((2du)/((u+1)(u−1))) =∫ ((1/(u−1)) −(1/(u+1)))du  =ln∣((u−1)/(u+1))∣ =ln((((√(1+x))−1)/( (√(1+x)) +1))) ⇒  f(x) = (π/2)ln∣x∣ −(π/2)ln((((√(1+x))−1)/( (√(1+x)) +1))) +λ  λ =lim_(x→1) (f(x) −(π/2)ln∣x∣ +(π/2)ln((((√(1+x))−1)/( (√(1+x))+1))))  =f(1) +(π/2)ln((((√2)−1)/( (√2)+1)))  =∫_0 ^(π/2)  ln(1+sin^2 t)dt +(π/2)ln((((√2)−1)/( (√2)+1))) .
wehavef(x)=0π2sin2t1+xsin2tdtandforx0f(x)=1x0π21+xsin2t11+xsin2tdt=π2x1x0π2dt1+xsin2tbut0π2dt1+xsin2t=0π2dt1+x1cos(2t)2=0π22dt2+xxcos(2t)=2t=u0πdu2+xxcosualsochtan(u2)=tgive0π2dt1+xsin2t=0+12+xx1t21+t22dt1+t2=02dt(2+x)(1+t2)x(1t2)=02dt2+x+(2+x)t2x+xt2=02dt2+2(1+x)t2=0dt1+(1+x)t2=1+xt=u011+u2du1+x=π21+xf(x)=π2x1xπ21+x=π2x(111+x)f(x)=π2lnxπ2.xdtt1+t+λdtt1+t=1+t=u2udu(u21)u=2du(u+1)(u1)=(1u11u+1)du=lnu1u+1=ln(1+x11+x+1)f(x)=π2lnxπ2ln(1+x11+x+1)+λλ=limx1(f(x)π2lnx+π2ln(1+x11+x+1))=f(1)+π2ln(212+1)=0π2ln(1+sin2t)dt+π2ln(212+1).

Leave a Reply

Your email address will not be published. Required fields are marked *