Menu Close

find-a-simple-form-of-L-e-x-L-is-laplace-transform-




Question Number 38197 by maxmathsup by imad last updated on 22/Jun/18
find a simple form of L(e^(−(√x)) )  L is laplace transform
findasimpleformofL(ex)Lislaplacetransform
Commented by math khazana by abdo last updated on 25/Jun/18
L(e^(−(√x)) )= ∫_0 ^∞   f(t)e^(−xt) dt=∫_0 ^∞   e^(−(√t)  −xt)  dt  changement (√t)=u give  L(e^(−(√x)) )= ∫_0 ^∞     e^(−u−xu^2 )  2u du  =−(1/x) ∫_0 ^∞     −2xu e^(−xu^2 )   e^(−u) du   −(1/x){[ e^(−xu^2 )  e^(−u) ]_0 ^(+∞)   +∫_0 ^∞   e^(−u) e^(−xu^2 ) }  =(1/x) −(1/x) ∫_0 ^∞   e^(−(xu^2  +u)) du but  ∫_0 ^∞    e^(−(xu^2  +u)) du=∫_0 ^∞    e^(−{((√x)u)^2  +2 (((√x)u)/( (√x)))  + (1/x)  −(1/x)}) du  = ∫_0 ^∞   e^(−{ ((√x)u +(1/( (√x))))^2  } +(1/x))   du  =e^(1/x)    ∫_0 ^∞    e^(−{ ((√x)u+(1/( (√x))))^2 }) du  =e^(1/x)    ∫_(1/( (√x))) ^(+∞)     e^(−t^2 )   (dt/( (√x)))  (  chang.(√x)u +(1/( (√x))) =t)  =(e^(1/x) /( (√x))) ∫_(1/( (√x))) ^(+∞)    e^(−t^2 ) dt ⇒  L(e^(−(√x)) ) =(1/x) −(e^(1/( (√x))) /(x(√x)))   ∫_(1/( (√x))) ^(+∞)    e^(−t^2 ) dt .
L(ex)=0f(t)extdt=0etxtdtchangementt=ugiveL(ex)=0euxu22udu=1x02xuexu2eudu1x{[exu2eu]0++0euexu2}=1x1x0e(xu2+u)dubut0e(xu2+u)du=0e{(xu)2+2xux+1x1x}du=0e{(xu+1x)2}+1xdu=e1x0e{(xu+1x)2}du=e1x1x+et2dtx(chang.xu+1x=t)=e1xx1x+et2dtL(ex)=1xe1xxx1x+et2dt.

Leave a Reply

Your email address will not be published. Required fields are marked *