Menu Close

find-a-simple-form-of-L-e-x-L-is-laplace-transform-




Question Number 38197 by maxmathsup by imad last updated on 22/Jun/18
find a simple form of L(e^(−(√x)) )  L is laplace transform
$${find}\:{a}\:{simple}\:{form}\:{of}\:{L}\left({e}^{−\sqrt{{x}}} \right)\:\:{L}\:{is}\:{laplace}\:{transform} \\ $$
Commented by math khazana by abdo last updated on 25/Jun/18
L(e^(−(√x)) )= ∫_0 ^∞   f(t)e^(−xt) dt=∫_0 ^∞   e^(−(√t)  −xt)  dt  changement (√t)=u give  L(e^(−(√x)) )= ∫_0 ^∞     e^(−u−xu^2 )  2u du  =−(1/x) ∫_0 ^∞     −2xu e^(−xu^2 )   e^(−u) du   −(1/x){[ e^(−xu^2 )  e^(−u) ]_0 ^(+∞)   +∫_0 ^∞   e^(−u) e^(−xu^2 ) }  =(1/x) −(1/x) ∫_0 ^∞   e^(−(xu^2  +u)) du but  ∫_0 ^∞    e^(−(xu^2  +u)) du=∫_0 ^∞    e^(−{((√x)u)^2  +2 (((√x)u)/( (√x)))  + (1/x)  −(1/x)}) du  = ∫_0 ^∞   e^(−{ ((√x)u +(1/( (√x))))^2  } +(1/x))   du  =e^(1/x)    ∫_0 ^∞    e^(−{ ((√x)u+(1/( (√x))))^2 }) du  =e^(1/x)    ∫_(1/( (√x))) ^(+∞)     e^(−t^2 )   (dt/( (√x)))  (  chang.(√x)u +(1/( (√x))) =t)  =(e^(1/x) /( (√x))) ∫_(1/( (√x))) ^(+∞)    e^(−t^2 ) dt ⇒  L(e^(−(√x)) ) =(1/x) −(e^(1/( (√x))) /(x(√x)))   ∫_(1/( (√x))) ^(+∞)    e^(−t^2 ) dt .
$${L}\left({e}^{−\sqrt{{x}}} \right)=\:\int_{\mathrm{0}} ^{\infty} \:\:{f}\left({t}\right){e}^{−{xt}} {dt}=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\sqrt{{t}}\:\:−{xt}} \:{dt} \\ $$$${changement}\:\sqrt{{t}}={u}\:{give} \\ $$$${L}\left({e}^{−\sqrt{{x}}} \right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:{e}^{−{u}−{xu}^{\mathrm{2}} } \:\mathrm{2}{u}\:{du} \\ $$$$=−\frac{\mathrm{1}}{{x}}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:−\mathrm{2}{xu}\:{e}^{−{xu}^{\mathrm{2}} } \:\:{e}^{−{u}} {du}\: \\ $$$$−\frac{\mathrm{1}}{{x}}\left\{\left[\:{e}^{−{xu}^{\mathrm{2}} } \:{e}^{−{u}} \right]_{\mathrm{0}} ^{+\infty} \:\:+\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{u}} {e}^{−{xu}^{\mathrm{2}} } \right\} \\ $$$$=\frac{\mathrm{1}}{{x}}\:−\frac{\mathrm{1}}{{x}}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left({xu}^{\mathrm{2}} \:+{u}\right)} {du}\:{but} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−\left({xu}^{\mathrm{2}} \:+{u}\right)} {du}=\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−\left\{\left(\sqrt{{x}}{u}\right)^{\mathrm{2}} \:+\mathrm{2}\:\frac{\sqrt{{x}}{u}}{\:\sqrt{{x}}}\:\:+\:\frac{\mathrm{1}}{{x}}\:\:−\frac{\mathrm{1}}{{x}}\right\}} {du} \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left\{\:\left(\sqrt{{x}}{u}\:+\frac{\mathrm{1}}{\:\sqrt{{x}}}\right)^{\mathrm{2}} \:\right\}\:+\frac{\mathrm{1}}{{x}}} \:\:{du} \\ $$$$={e}^{\frac{\mathrm{1}}{{x}}} \:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−\left\{\:\left(\sqrt{{x}}{u}+\frac{\mathrm{1}}{\:\sqrt{{x}}}\right)^{\mathrm{2}} \right\}} {du} \\ $$$$={e}^{\frac{\mathrm{1}}{{x}}} \:\:\:\int_{\frac{\mathrm{1}}{\:\sqrt{{x}}}} ^{+\infty} \:\:\:\:{e}^{−{t}^{\mathrm{2}} } \:\:\frac{{dt}}{\:\sqrt{{x}}}\:\:\left(\:\:{chang}.\sqrt{{x}}{u}\:+\frac{\mathrm{1}}{\:\sqrt{{x}}}\:={t}\right) \\ $$$$=\frac{{e}^{\frac{\mathrm{1}}{{x}}} }{\:\sqrt{{x}}}\:\int_{\frac{\mathrm{1}}{\:\sqrt{{x}}}} ^{+\infty} \:\:\:{e}^{−{t}^{\mathrm{2}} } {dt}\:\Rightarrow \\ $$$${L}\left({e}^{−\sqrt{{x}}} \right)\:=\frac{\mathrm{1}}{{x}}\:−\frac{{e}^{\frac{\mathrm{1}}{\:\sqrt{{x}}}} }{{x}\sqrt{{x}}}\:\:\:\int_{\frac{\mathrm{1}}{\:\sqrt{{x}}}} ^{+\infty} \:\:\:{e}^{−{t}^{\mathrm{2}} } {dt}\:. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *