Question Number 100650 by bobhans last updated on 28/Jun/20
$$\mathrm{find}\:\mathrm{all}\:\mathrm{2×2}\:\mathrm{matrices}\:\mathrm{A}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{A}^{\mathrm{3}} −\mathrm{3A}^{\mathrm{2}} \:=\:\begin{pmatrix}{−\mathrm{2}\:\:\:\:\:−\mathrm{2}}\\{−\mathrm{2}\:\:\:\:\:\:−\mathrm{2}}\end{pmatrix} \\ $$
Answered by bramlex last updated on 28/Jun/20
$${let}\:{A}\:=\:\begin{pmatrix}{{a}\:\:\:\:\:{b}}\\{{c}\:\:\:\:\:{d}}\end{pmatrix} \\ $$$${A}^{\mathrm{2}} \left({A}−\mathrm{3}{I}\right)\:=\:\begin{pmatrix}{−\mathrm{2}\:\:\:\:\:−\mathrm{2}}\\{−\mathrm{2}\:\:\:\:\:\:−\mathrm{2}}\end{pmatrix} \\ $$$$\left({det}\left({A}\right)\right)^{\mathrm{2}} \:{det}\left({A}−\mathrm{3}{I}\right)\:=\:{det}\:\begin{pmatrix}{−\mathrm{2}\:\:\:\:−\mathrm{2}}\\{−\mathrm{2}\:\:\:\:−\mathrm{2}}\end{pmatrix}\:=\:\mathrm{0} \\ $$$${case}\:\mathrm{1} \\ $$$${det}\:\left({A}\right)=\mathrm{0}\:\Rightarrow{p}\left(\lambda\right)\:=\:{det}\left(\lambda{I}−{A}\right)=\mathrm{0} \\ $$$$\begin{vmatrix}{\lambda−{a}\:\:\:\:\:−{b}}\\{−{c}\:\:\:\:\:\:\:\lambda−{d}}\end{vmatrix}=\:\lambda^{\mathrm{2}} −\left({a}+{d}\right)\lambda+{ad}−{bc}\: \\ $$$$\lambda^{\mathrm{2}} −{TR}\left({A}\right)\lambda+{det}\left({A}\right)\:=\:\mathrm{0} \\ $$$$\Rightarrow\lambda^{\mathrm{2}} −{TR}\left({A}\right)\lambda=\mathrm{0}\:;\:{A}^{\mathrm{2}} =\:{TR}\left({A}\right).{A} \\ $$$${A}^{\mathrm{3}} =\:{A}\left({TR}\left({A}\right)\right)=\:\left({TR}\left({A}\right)\right)^{\mathrm{2}} {A} \\ $$$$\Rightarrow{A}^{\mathrm{3}} −\mathrm{3}{A}=\begin{pmatrix}{−\mathrm{2}\:\:\:\:−\mathrm{2}}\\{−\mathrm{2}\:\:\:\:\:−\mathrm{2}}\end{pmatrix} \\ $$$${TR}\left({A}\right)^{\mathrm{3}} −\mathrm{3}\left({TR}\left({A}\right)\right)^{\mathrm{2}} +\mathrm{4}\:=\:\mathrm{0} \\ $$$${TR}\left({A}\right)\:=\:\mathrm{2}\:{or}\:{TR}\left({A}\right)\:=\:−\mathrm{1} \\ $$$${case}\:\mathrm{1}{a} \\ $$$${TR}\left({A}\right)=\mathrm{2}\:\Rightarrow\:−\mathrm{2}{A}\:=\:\begin{pmatrix}{−\mathrm{2}\:\:\:−\mathrm{2}}\\{−\mathrm{2}\:\:\:\:−\mathrm{2}}\end{pmatrix} \\ $$$${A}\:=\:\begin{pmatrix}{\mathrm{1}\:\:\:\:\mathrm{1}}\\{\mathrm{1}\:\:\:\:\mathrm{1}}\end{pmatrix}\:.\:{TR}\left({A}\right)\:=\:−\mathrm{1}\: \\ $$$$\mathrm{4}{A}\:=\:\begin{pmatrix}{−\mathrm{2}\:\:\:\:−\mathrm{2}}\\{−\mathrm{2}\:\:\:\:\:\:−\mathrm{2}}\end{pmatrix}\:\Rightarrow{A}=\begin{pmatrix}{−\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:−\frac{\mathrm{1}}{\mathrm{2}}}\\{−\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:−\frac{\mathrm{1}}{\mathrm{2}}}\end{pmatrix} \\ $$$${case}\:\mathrm{2} \\ $$$${det}\left({A}−\mathrm{3}{I}\right)=\mathrm{0} \\ $$$${det}\left({A}−\mathrm{2}{I}\right)^{\mathrm{2}} \left({A}+{I}\right)=\mathrm{0} \\ $$$${case}\mathrm{2}{a} \\ $$$${det}\left({A}−\mathrm{2}{I}\right)\:=\:\mathrm{0}\:\Rightarrow{p}\left(\lambda\right)=\lambda^{\mathrm{2}} −\mathrm{5}\lambda+\mathrm{6} \\ $$$${A}^{\mathrm{2}} =\mathrm{5}{A}−\mathrm{6}{I}\:\Rightarrow{A}^{\mathrm{3}} −\mathrm{3}{A}^{\mathrm{2}} =\left(\mathrm{19}{A}−\mathrm{30}{I}\right)−\mathrm{3}\left(\mathrm{5}{A}−\mathrm{6}{I}\right) \\ $$$$=\:\mathrm{4}{A}−\mathrm{12}{I}\:=\:\begin{pmatrix}{−\mathrm{2}\:\:\:\:−\mathrm{2}}\\{−\mathrm{2}\:\:\:\:\:−\mathrm{2}}\end{pmatrix} \\ $$$$\mathrm{4}{A}\:=\:\begin{pmatrix}{\mathrm{10}\:\:\:−\mathrm{2}}\\{−\mathrm{2}\:\:\:\mathrm{10}}\end{pmatrix}\:\Rightarrow{A}=\begin{pmatrix}{\frac{\mathrm{5}}{\mathrm{2}}\:\:\:−\frac{\mathrm{1}}{\mathrm{2}}}\\{−\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\frac{\mathrm{5}}{\mathrm{2}}}\end{pmatrix} \\ $$$${case}\mathrm{2}{b} \\ $$$${det}\left({A}+{I}\right)=\mathrm{0}\:\Rightarrow{p}\left(\lambda\right)=\lambda^{\mathrm{2}} −\mathrm{2}\lambda−\mathrm{3} \\ $$$${A}^{\mathrm{2}} −\mathrm{2}{A}−\mathrm{3}{I}=\mathrm{0};\:{A}^{\mathrm{2}} =\mathrm{2}{A}+\mathrm{3}{I} \\ $$$${A}^{\mathrm{3}} −\mathrm{3}{A}^{\mathrm{2}} =\mathrm{7}{A}+\mathrm{6}{I}−\mathrm{3}\left(\mathrm{2}{A}+\mathrm{3}{I}\right)={A}−\mathrm{3}{I} \\ $$$$\Rightarrow{A}−\mathrm{3}{I}\:=\:\begin{pmatrix}{−\mathrm{2}\:\:\:\:−\mathrm{2}}\\{−\mathrm{2}\:\:\:\:\:−\mathrm{2}}\end{pmatrix} \\ $$$${A}\:=\:\begin{pmatrix}{\mathrm{1}\:\:\:\:−\mathrm{2}}\\{−\mathrm{2}\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$\therefore\:{A}\:=\:\begin{pmatrix}{\mathrm{1}\:\:\:\mathrm{1}}\\{\mathrm{1}\:\:\:\:\mathrm{1}}\end{pmatrix}\:;\:\begin{pmatrix}{−\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:−\frac{\mathrm{1}}{\mathrm{2}}}\\{−\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:−\frac{\mathrm{1}}{\mathrm{2}}}\end{pmatrix} \\ $$$$;\:\begin{pmatrix}{\frac{\mathrm{5}}{\mathrm{2}}\:\:\:\:\:\:−\frac{\mathrm{1}}{\mathrm{2}}}\\{−\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\frac{\mathrm{5}}{\mathrm{2}}}\end{pmatrix}\:;\:\begin{pmatrix}{\:\:\mathrm{1}\:\:\:\:\:−\mathrm{2}}\\{−\mathrm{2}\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$ \\ $$
Commented by bobhans last updated on 28/Jun/20
$$\mathrm{great}=== \\ $$