Menu Close

find-all-aplication-f-in-R-R-f-C-2-x-R-f-x-f-x-x-




Question Number 144608 by ArielVyny last updated on 26/Jun/21
find all aplication f in R→R  f∈C^2   ∀x∈R.  f′′(x)+f(−x)=x
findallaplicationfinRRfC2xR.f(x)+f(x)=x
Answered by Olaf_Thorendsen last updated on 27/Jun/21
f′′(x)+f(−x) = x   (1)  Let u(x) = f(x)+x  (1) : u′′(x)+u(−x)+x = x  u′′(x)+u(−x) = 0  u′′(−x)+u(x) = 0  −u′′′(−x)+u′(x) = 0  u^((4)) (−x)+u′′(x) = 0  u^((4)) (−x)−u(−x) = 0  u^((4)) (x)−u(x) = 0  r^4 −1 = 0  r = 1, i, −1, −i  u(x) = C_1 e^x +C_2 e^(−x) +C_3 e^(ix) +C_4 e^(−ix)   or :  u(x) = acoshx+bsinhx+ccosx+dsinx    f(x) = u(x)−x  f(x) = acoshx+bsinhx+ccosx+dsinx−x    f′′(x) = acoshx+bsinhx−ccosx−dsinx  f(−x) = acoshx−bsinhx+ccosx−dsinx+x  With (1) necessarily a = 0, d = 0    Finally, the genaral solution is :  f(x) = αsinhx+βcosx−x
f(x)+f(x)=x(1)Letu(x)=f(x)+x(1):u(x)+u(x)+x=xu(x)+u(x)=0u(x)+u(x)=0u(x)+u(x)=0u(4)(x)+u(x)=0u(4)(x)u(x)=0u(4)(x)u(x)=0r41=0r=1,i,1,iu(x)=C1ex+C2ex+C3eix+C4eixor:u(x)=acoshx+bsinhx+ccosx+dsinxf(x)=u(x)xf(x)=acoshx+bsinhx+ccosx+dsinxxf(x)=acoshx+bsinhxccosxdsinxf(x)=acoshxbsinhx+ccosxdsinx+xWith(1)necessarilya=0,d=0Finally,thegenaralsolutionis:f(x)=αsinhx+βcosxx

Leave a Reply

Your email address will not be published. Required fields are marked *