Question Number 144608 by ArielVyny last updated on 26/Jun/21
$${find}\:{all}\:{aplication}\:{f}\:{in}\:\mathbb{R}\rightarrow\mathbb{R}\:\:{f}\in{C}^{\mathrm{2}} \\ $$$$\forall{x}\in\mathbb{R}.\:\:{f}''\left({x}\right)+{f}\left(−{x}\right)={x} \\ $$
Answered by Olaf_Thorendsen last updated on 27/Jun/21
$${f}''\left({x}\right)+{f}\left(−{x}\right)\:=\:{x}\:\:\:\left(\mathrm{1}\right) \\ $$$$\mathrm{Let}\:{u}\left({x}\right)\:=\:{f}\left({x}\right)+{x} \\ $$$$\left(\mathrm{1}\right)\::\:{u}''\left({x}\right)+{u}\left(−{x}\right)+{x}\:=\:{x} \\ $$$${u}''\left({x}\right)+{u}\left(−{x}\right)\:=\:\mathrm{0} \\ $$$${u}''\left(−{x}\right)+{u}\left({x}\right)\:=\:\mathrm{0} \\ $$$$−{u}'''\left(−{x}\right)+{u}'\left({x}\right)\:=\:\mathrm{0} \\ $$$${u}^{\left(\mathrm{4}\right)} \left(−{x}\right)+{u}''\left({x}\right)\:=\:\mathrm{0} \\ $$$${u}^{\left(\mathrm{4}\right)} \left(−{x}\right)−{u}\left(−{x}\right)\:=\:\mathrm{0} \\ $$$${u}^{\left(\mathrm{4}\right)} \left({x}\right)−{u}\left({x}\right)\:=\:\mathrm{0} \\ $$$${r}^{\mathrm{4}} −\mathrm{1}\:=\:\mathrm{0} \\ $$$${r}\:=\:\mathrm{1},\:{i},\:−\mathrm{1},\:−{i} \\ $$$${u}\left({x}\right)\:=\:\mathrm{C}_{\mathrm{1}} {e}^{{x}} +\mathrm{C}_{\mathrm{2}} {e}^{−{x}} +\mathrm{C}_{\mathrm{3}} {e}^{{ix}} +\mathrm{C}_{\mathrm{4}} {e}^{−{ix}} \\ $$$$\mathrm{or}\:: \\ $$$${u}\left({x}\right)\:=\:{a}\mathrm{cosh}{x}+{b}\mathrm{sinh}{x}+{c}\mathrm{cos}{x}+{d}\mathrm{sin}{x} \\ $$$$ \\ $$$${f}\left({x}\right)\:=\:{u}\left({x}\right)−{x} \\ $$$${f}\left({x}\right)\:=\:{a}\mathrm{cosh}{x}+{b}\mathrm{sinh}{x}+{c}\mathrm{cos}{x}+{d}\mathrm{sin}{x}−{x} \\ $$$$ \\ $$$${f}''\left({x}\right)\:=\:{a}\mathrm{cosh}{x}+{b}\mathrm{sinh}{x}−{c}\mathrm{cos}{x}−{d}\mathrm{sin}{x} \\ $$$${f}\left(−{x}\right)\:=\:{a}\mathrm{cosh}{x}−{b}\mathrm{sinh}{x}+{c}\mathrm{cos}{x}−{d}\mathrm{sin}{x}+{x} \\ $$$$\mathrm{With}\:\left(\mathrm{1}\right)\:\mathrm{necessarily}\:{a}\:=\:\mathrm{0},\:{d}\:=\:\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Finally},\:\mathrm{the}\:\mathrm{genaral}\:\mathrm{solution}\:\mathrm{is}\:: \\ $$$${f}\left({x}\right)\:=\:\alpha\mathrm{sinh}{x}+\beta\mathrm{cos}{x}−{x} \\ $$