Menu Close

Find-all-asymptotes-of-the-function-y-x-x-2-2-




Question Number 126008 by bramlexs22 last updated on 16/Dec/20
 Find all asymptotes of the   function y=(x/( (√(x^2 +2)))) .
Findallasymptotesofthefunctiony=xx2+2.
Answered by liberty last updated on 16/Dec/20
Horizontal asymptote : y = lim_(x→∞)  (x/( (√(x^2 +2)))) = lim_(x→∞)  (1/( (√(1+2x^(−2) ))))=1  and y = lim_(x→−∞) (x/( (√(x^2 +2)))) = lim_(x→−∞) ((−1)/( (√(1+2x^(−2) ))))=−1  so y=−1 and y=1 are the horizontal asymptotes
Horizontalasymptote:y=limxxx2+2=limx11+2x2=1andy=limxxx2+2=limx11+2x2=1soy=1andy=1arethehorizontalasymptotes
Answered by ebi last updated on 16/Dec/20
  let f(x)=(x/( (√(x^2 +2))))  vertical asymptotes:  since the (√(x^2 +2)) >0,   ∴ no vertical asymptotes available.    horizontal asymptotes:  lim_(x→+∞)  ((x/( (√(x^2 +2)))))=lim_(x→∞)  ((1/( (√(1+(2/x^2 ))))))  =(1/( (√(1+0))))=1  lim_(x→−∞)  ((x/( (√(x^2 +2)))))=lim_(x→∞)  (−(x/( (√(x^2 +2)))))  =lim_(x→∞)  (−(1/( (√(1+(2/x^2 ))))))=−(1/( (√(1+0))))=−1  ∴ horizontal asymptotes, y=−1 and y=1.    slank asymptotes:  y=mx+c  m=((f(x))/x)=(1/( (√(x^2 +2))))  lim_(x→+∞)  ((1/( (√(x^2 +2)))))=0  lim_(x→−∞)  ((1/( (√(x^2 +2)))))=lim_(x→∞)  (−(1/( (√(x^2 +2)))))=0  ∴ no slank asymptotes available.
letf(x)=xx2+2verticalasymptotes:sincethex2+2>0,noverticalasymptotesavailable.horizontalasymptotes:limx+(xx2+2)=limx(11+2x2)=11+0=1limx(xx2+2)=limx(xx2+2)=limx(11+2x2)=11+0=1horizontalasymptotes,y=1andy=1.slankasymptotes:y=mx+cm=f(x)x=1x2+2limx+(1x2+2)=0limx(1x2+2)=limx(1x2+2)=0noslankasymptotesavailable.

Leave a Reply

Your email address will not be published. Required fields are marked *