Menu Close

Find-all-asymptotes-of-the-function-y-x-x-2-2-




Question Number 126008 by bramlexs22 last updated on 16/Dec/20
 Find all asymptotes of the   function y=(x/( (√(x^2 +2)))) .
$$\:{Find}\:{all}\:{asymptotes}\:{of}\:{the}\: \\ $$$${function}\:{y}=\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}\:. \\ $$
Answered by liberty last updated on 16/Dec/20
Horizontal asymptote : y = lim_(x→∞)  (x/( (√(x^2 +2)))) = lim_(x→∞)  (1/( (√(1+2x^(−2) ))))=1  and y = lim_(x→−∞) (x/( (√(x^2 +2)))) = lim_(x→−∞) ((−1)/( (√(1+2x^(−2) ))))=−1  so y=−1 and y=1 are the horizontal asymptotes
$${Horizontal}\:{asymptote}\::\:{y}\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{2}{x}^{−\mathrm{2}} }}=\mathrm{1} \\ $$$${and}\:{y}\:=\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}\:=\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\frac{−\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{2}{x}^{−\mathrm{2}} }}=−\mathrm{1} \\ $$$${so}\:{y}=−\mathrm{1}\:{and}\:{y}=\mathrm{1}\:{are}\:{the}\:{horizontal}\:{asymptotes} \\ $$
Answered by ebi last updated on 16/Dec/20
  let f(x)=(x/( (√(x^2 +2))))  vertical asymptotes:  since the (√(x^2 +2)) >0,   ∴ no vertical asymptotes available.    horizontal asymptotes:  lim_(x→+∞)  ((x/( (√(x^2 +2)))))=lim_(x→∞)  ((1/( (√(1+(2/x^2 ))))))  =(1/( (√(1+0))))=1  lim_(x→−∞)  ((x/( (√(x^2 +2)))))=lim_(x→∞)  (−(x/( (√(x^2 +2)))))  =lim_(x→∞)  (−(1/( (√(1+(2/x^2 ))))))=−(1/( (√(1+0))))=−1  ∴ horizontal asymptotes, y=−1 and y=1.    slank asymptotes:  y=mx+c  m=((f(x))/x)=(1/( (√(x^2 +2))))  lim_(x→+∞)  ((1/( (√(x^2 +2)))))=0  lim_(x→−∞)  ((1/( (√(x^2 +2)))))=lim_(x→∞)  (−(1/( (√(x^2 +2)))))=0  ∴ no slank asymptotes available.
$$ \\ $$$${let}\:{f}\left({x}\right)=\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}} \\ $$$${vertical}\:{asymptotes}: \\ $$$${since}\:{the}\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}\:>\mathrm{0},\: \\ $$$$\therefore\:{no}\:{vertical}\:{asymptotes}\:{available}. \\ $$$$ \\ $$$${horizontal}\:{asymptotes}: \\ $$$$\underset{{x}\rightarrow+\infty} {{lim}}\:\left(\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}\right)=\underset{{x}\rightarrow\infty} {{lim}}\:\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\frac{\mathrm{2}}{{x}^{\mathrm{2}} }}}\right) \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{0}}}=\mathrm{1} \\ $$$$\underset{{x}\rightarrow−\infty} {{lim}}\:\left(\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}\right)=\underset{{x}\rightarrow\infty} {{lim}}\:\left(−\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}\right) \\ $$$$=\underset{{x}\rightarrow\infty} {{lim}}\:\left(−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\frac{\mathrm{2}}{{x}^{\mathrm{2}} }}}\right)=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{0}}}=−\mathrm{1} \\ $$$$\therefore\:{horizontal}\:{asymptotes},\:{y}=−\mathrm{1}\:{and}\:{y}=\mathrm{1}. \\ $$$$ \\ $$$${slank}\:{asymptotes}: \\ $$$${y}={mx}+{c} \\ $$$${m}=\frac{{f}\left({x}\right)}{{x}}=\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}} \\ $$$$\underset{{x}\rightarrow+\infty} {{lim}}\:\left(\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}\right)=\mathrm{0} \\ $$$$\underset{{x}\rightarrow−\infty} {{lim}}\:\left(\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}\right)=\underset{{x}\rightarrow\infty} {{lim}}\:\left(−\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}\right)=\mathrm{0} \\ $$$$\therefore\:{no}\:{slank}\:{asymptotes}\:{available}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *