Menu Close

Find-all-complex-number-z-such-that-3z-1-4z-1-6z-1-12z-1-2-




Question Number 152757 by EDWIN88 last updated on 01/Sep/21
Find all complex number z such  that (3z+1)(4z+1)(6z+1)(12z+1)=2
$${Find}\:{all}\:{complex}\:{number}\:{z}\:{such} \\ $$$${that}\:\left(\mathrm{3}{z}+\mathrm{1}\right)\left(\mathrm{4}{z}+\mathrm{1}\right)\left(\mathrm{6}{z}+\mathrm{1}\right)\left(\mathrm{12}{z}+\mathrm{1}\right)=\mathrm{2} \\ $$
Answered by john_santu last updated on 01/Sep/21
note that 8(3z+1)6(4z+1)4(6z+1)2(12z+1)=768  (24z+8)(24z+6)(24z+4)(24z+2)=768  let u=24z+5  ⇒(u+3)(u+1)(u−1)(u−3)=768  ⇒(u^2 −1)(u^2 −9)=768  i.e w^2 −10w−759=0 , w=u^2   → { ((w_1 =33⇒z=((±(√(33))−5)/(24)))),((w_2 =−23⇒z=((±(√(23i))−5)/(24)))) :}
$${note}\:{that}\:\mathrm{8}\left(\mathrm{3}{z}+\mathrm{1}\right)\mathrm{6}\left(\mathrm{4}{z}+\mathrm{1}\right)\mathrm{4}\left(\mathrm{6}{z}+\mathrm{1}\right)\mathrm{2}\left(\mathrm{12}{z}+\mathrm{1}\right)=\mathrm{768} \\ $$$$\left(\mathrm{24}{z}+\mathrm{8}\right)\left(\mathrm{24}{z}+\mathrm{6}\right)\left(\mathrm{24}{z}+\mathrm{4}\right)\left(\mathrm{24}{z}+\mathrm{2}\right)=\mathrm{768} \\ $$$${let}\:{u}=\mathrm{24}{z}+\mathrm{5} \\ $$$$\Rightarrow\left({u}+\mathrm{3}\right)\left({u}+\mathrm{1}\right)\left({u}−\mathrm{1}\right)\left({u}−\mathrm{3}\right)=\mathrm{768} \\ $$$$\Rightarrow\left({u}^{\mathrm{2}} −\mathrm{1}\right)\left({u}^{\mathrm{2}} −\mathrm{9}\right)=\mathrm{768} \\ $$$${i}.{e}\:{w}^{\mathrm{2}} −\mathrm{10}{w}−\mathrm{759}=\mathrm{0}\:,\:{w}={u}^{\mathrm{2}} \\ $$$$\rightarrow\begin{cases}{{w}_{\mathrm{1}} =\mathrm{33}\Rightarrow{z}=\frac{\pm\sqrt{\mathrm{33}}−\mathrm{5}}{\mathrm{24}}}\\{{w}_{\mathrm{2}} =−\mathrm{23}\Rightarrow{z}=\frac{\pm\sqrt{\mathrm{23}{i}}−\mathrm{5}}{\mathrm{24}}}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *