Menu Close

find-all-continous-functions-f-R-R-such-that-f-x-2-1-f-1-x-4-x-R-




Question Number 151453 by mathdanisur last updated on 21/Aug/21
find all continous functions f : R→R  such that:  f(x^2  + 1) = f((√(1 + x^4 ))) ; ∀x∈R
$$\mathrm{find}\:\mathrm{all}\:\mathrm{continous}\:\mathrm{functions}\:\mathrm{f}\::\:\mathbb{R}\rightarrow\mathbb{R} \\ $$$$\mathrm{such}\:\mathrm{that}: \\ $$$$\mathrm{f}\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\:=\:\mathrm{f}\left(\sqrt{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{4}} }\right)\:;\:\forall\mathrm{x}\in\mathbb{R} \\ $$
Commented by MJS_new last updated on 21/Aug/21
f(x)=c∧c∈R
$${f}\left({x}\right)={c}\wedge{c}\in\mathbb{R} \\ $$
Commented by mathdanisur last updated on 21/Aug/21
wrong
$$\mathrm{wrong} \\ $$
Commented by MJS_new last updated on 21/Aug/21
no. maybe there are other functions. but with  f(x)=c: f(x^2 +1)=f((√(x^4 +1)))=c
$$\mathrm{no}.\:\mathrm{maybe}\:\mathrm{there}\:\mathrm{are}\:\mathrm{other}\:\mathrm{functions}.\:\mathrm{but}\:\mathrm{with} \\ $$$${f}\left({x}\right)={c}:\:{f}\left({x}^{\mathrm{2}} +\mathrm{1}\right)={f}\left(\sqrt{{x}^{\mathrm{4}} +\mathrm{1}}\right)={c} \\ $$
Commented by mathdanisur last updated on 22/Aug/21
need to prove
$$\mathrm{need}\:\mathrm{to}\:\mathrm{prove} \\ $$
Commented by MJS_new last updated on 22/Aug/21
sorry but what do you want to prove?  f(x)=5 ⇒ f(x^2 +1)=f((√(x^4 +1)))=f(((x^(37) +3ln (x^2 +2))/(5e^(ix) +9ζ(33))))=5
$$\mathrm{sorry}\:\mathrm{but}\:\mathrm{what}\:\mathrm{do}\:\mathrm{you}\:\mathrm{want}\:\mathrm{to}\:\mathrm{prove}? \\ $$$${f}\left({x}\right)=\mathrm{5}\:\Rightarrow\:{f}\left({x}^{\mathrm{2}} +\mathrm{1}\right)={f}\left(\sqrt{{x}^{\mathrm{4}} +\mathrm{1}}\right)={f}\left(\frac{{x}^{\mathrm{37}} +\mathrm{3ln}\:\left({x}^{\mathrm{2}} +\mathrm{2}\right)}{\mathrm{5e}^{\mathrm{i}{x}} +\mathrm{9}\zeta\left(\mathrm{33}\right)}\right)=\mathrm{5} \\ $$
Commented by mathdanisur last updated on 22/Aug/21
please solve again, thanks
$${please}\:{solve}\:{again},\:{thanks} \\ $$
Commented by MJS_new last updated on 22/Aug/21
this is weird
$$\mathrm{this}\:\mathrm{is}\:\mathrm{weird} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *