Question Number 83074 by ~blr237~ last updated on 27/Feb/20
$${find}\:{all}\:{function}\:\:{satisfying}\:\:\forall\:{x}\in\mathbb{R}\backslash\left\{{k}\pi\:,\:\:{k}\in\mathbb{Z}\right\} \\ $$$${f}\left({x}\right)+\int_{\mathrm{0}} ^{\mathrm{1}} {f}^{\mathrm{2}} \left({x}\right){dx}=\frac{{x}}{{sin}\left(\pi{x}\right)} \\ $$
Commented by mr W last updated on 28/Feb/20
$$\int_{\mathrm{0}} ^{\mathrm{1}} {f}^{\mathrm{2}} \left({x}\right){dx}={k}={constant} \\ $$$${f}\left({x}\right)=\frac{{x}}{{sin}\left(\pi{x}\right)}−{k} \\ $$$${f}^{\mathrm{2}} \left({x}\right)=\frac{{x}^{\mathrm{2}} }{{sin}^{\mathrm{2}} \left(\pi{x}\right)}−\mathrm{2}{k}\frac{{x}}{\mathrm{sin}\:\pi{x}}+{k}^{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {f}^{\mathrm{2}} \left({x}\right){dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} {dx}}{{sin}^{\mathrm{2}} \left(\pi{x}\right)}−\mathrm{2}{k}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{xdx}}{\mathrm{sin}\:\pi{x}}+{k}^{\mathrm{2}} ={k} \\ $$$${k}^{\mathrm{2}} −\left(\mathrm{1}+\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{xdx}}{\mathrm{sin}\:\pi{x}}\right){k}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} {dx}}{{sin}^{\mathrm{2}} \left(\pi{x}\right)}=\mathrm{0} \\ $$$${k}^{\mathrm{2}} −\left(\mathrm{1}+\mathrm{2}{A}\right){k}+{B}=\mathrm{0} \\ $$$$\Rightarrow{k}=\frac{\mathrm{1}+\mathrm{2}{A}\pm\sqrt{\left(\mathrm{1}+\mathrm{2}{A}\right)^{\mathrm{2}} −\mathrm{4}{B}}}{\mathrm{2}} \\ $$$$\Rightarrow{f}\left({x}\right)=\frac{{x}}{{sin}\left(\pi{x}\right)}−\frac{\mathrm{1}+\mathrm{2}{A}\pm\sqrt{\left(\mathrm{1}+\mathrm{2}{A}\right)^{\mathrm{2}} −\mathrm{4}{B}}}{\mathrm{2}} \\ $$$${with} \\ $$$${A}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{xdx}}{\mathrm{sin}\:\pi{x}}=\frac{\mathrm{1}}{\pi^{\mathrm{2}} }\int_{\mathrm{0}} ^{\pi} \frac{{tdt}}{\mathrm{sin}\:{t}} \\ $$$${B}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} {dx}}{{sin}^{\mathrm{2}} \left(\pi{x}\right)}=\frac{\mathrm{1}}{\pi^{\mathrm{3}} }\int_{\mathrm{0}} ^{\pi} \frac{{t}^{\mathrm{2}} {dt}}{\mathrm{sin}^{\mathrm{2}} \:{t}} \\ $$$${but}\:{A}\:{and}\:{B}\:{may}\:{not}\:{exist},\:{so}\:{the} \\ $$$${question}\:{may}\:{be}\:{wrong}. \\ $$
Commented by ~blr237~ last updated on 28/Feb/20
$${nice}\:{sir}\:!\:\:{the}\:{both}\:{don}'{t}\:{exist}\:\::{it}'{s}\:\:{feel}\:{as}\:{sometimes}\:{it}'{s}\:{not}\:{easy}\:{to}\:{prove}\:{that}\:{the}\:{solution}\:{set}\:{of}\:{an}\: \\ $$$${equation}\:{is}\:{empty} \\ $$