Menu Close

find-all-function-satisfying-x-R-kpi-k-Z-f-x-0-1-f-2-x-dx-x-sin-pix-




Question Number 83074 by ~blr237~ last updated on 27/Feb/20
find all function  satisfying  ∀ x∈R\{kπ ,  k∈Z}  f(x)+∫_0 ^1 f^2 (x)dx=(x/(sin(πx)))
findallfunctionsatisfyingxR{kπ,kZ}f(x)+01f2(x)dx=xsin(πx)
Commented by mr W last updated on 28/Feb/20
∫_0 ^1 f^2 (x)dx=k=constant  f(x)=(x/(sin(πx)))−k  f^2 (x)=(x^2 /(sin^2 (πx)))−2k(x/(sin πx))+k^2   ∫_0 ^1 f^2 (x)dx=∫_0 ^1 ((x^2 dx)/(sin^2 (πx)))−2k∫_0 ^1 ((xdx)/(sin πx))+k^2 =k  k^2 −(1+2∫_0 ^1 ((xdx)/(sin πx)))k+∫_0 ^1 ((x^2 dx)/(sin^2 (πx)))=0  k^2 −(1+2A)k+B=0  ⇒k=((1+2A±(√((1+2A)^2 −4B)))/2)  ⇒f(x)=(x/(sin(πx)))−((1+2A±(√((1+2A)^2 −4B)))/2)  with  A=∫_0 ^1 ((xdx)/(sin πx))=(1/π^2 )∫_0 ^π ((tdt)/(sin t))  B=∫_0 ^1 ((x^2 dx)/(sin^2 (πx)))=(1/π^3 )∫_0 ^π ((t^2 dt)/(sin^2  t))  but A and B may not exist, so the  question may be wrong.
01f2(x)dx=k=constantf(x)=xsin(πx)kf2(x)=x2sin2(πx)2kxsinπx+k201f2(x)dx=01x2dxsin2(πx)2k01xdxsinπx+k2=kk2(1+201xdxsinπx)k+01x2dxsin2(πx)=0k2(1+2A)k+B=0k=1+2A±(1+2A)24B2f(x)=xsin(πx)1+2A±(1+2A)24B2withA=01xdxsinπx=1π20πtdtsintB=01x2dxsin2(πx)=1π30πt2dtsin2tbutAandBmaynotexist,sothequestionmaybewrong.
Commented by ~blr237~ last updated on 28/Feb/20
nice sir !  the both don′t exist  :it′s  feel as sometimes it′s not easy to prove that the solution set of an   equation is empty
nicesir!thebothdontexist:itsfeelassometimesitsnoteasytoprovethatthesolutionsetofanequationisempty

Leave a Reply

Your email address will not be published. Required fields are marked *