Menu Close

Find-all-functions-that-satisfy-the-equation-f-x-dx-1-f-x-dx-1-




Question Number 86734 by Tony Lin last updated on 30/Mar/20
Find all functions that satisfy the  equation  [∫f(x)dx][∫(1/(f(x)))dx]=−1
Findallfunctionsthatsatisfytheequation[f(x)dx][1f(x)dx]=1
Answered by mr W last updated on 30/Mar/20
∫(1/(f(x)))dx=−(1/(∫f(x)dx))  (1/(f(x)))=((f(x))/((∫f(x)dx)^2 ))  ⇒∫f(x)dx=±f(x)  ⇒f(x)=±f′(x)  ∫((df(x))/(f(x)))=±∫dx  ln f(x)=±x+c  ⇒f(x)=Ce^(±x)     check:  ∫f(x)dx=±Ce^(±x)   ∫(1/(f(x)))dx=±∫(1/C)e^(∓x) dx=∓(1/C)e^(∓x)   [∫f(x)dx][∫(1/(f(x)))dx]=(±Ce^(±x) )(∓(1/C)e^(±x) )=−1
1f(x)dx=1f(x)dx1f(x)=f(x)(f(x)dx)2f(x)dx=±f(x)f(x)=±f(x)df(x)f(x)=±dxlnf(x)=±x+cf(x)=Ce±xcheck:f(x)dx=±Ce±x1f(x)dx=±1Cexdx=1Cex[f(x)dx][1f(x)dx]=(±Ce±x)(1Ce±x)=1
Commented by Tony Lin last updated on 30/Mar/20
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *