Menu Close

Find-all-integer-values-of-a-such-that-the-quadratic-expression-x-a-x-1991-1-can-be-factored-as-a-product-x-b-x-c-where-b-and-c-are-integers-




Question Number 21422 by Tinkutara last updated on 23/Sep/17
Find all integer values of a such that  the quadratic expression  (x + a)(x + 1991) + 1 can be factored  as a product (x + b)(x + c) where b and  c are integers.
Findallintegervaluesofasuchthatthequadraticexpression(x+a)(x+1991)+1canbefactoredasaproduct(x+b)(x+c)wherebandcareintegers.
Commented by Tikufly last updated on 23/Sep/17
a=1993 or a=1989
a=1993ora=1989
Commented by Tikufly last updated on 23/Sep/17
Sol  (x+b)(x+c)=(x+a)(x+1991)+1  =>x^2 +(b+c)x+bc=x^2 +(a+1991)x+1991a+1  then b+c=(a+1991) and bc=(1991a+1)    we know that  (b+c)^2 −4bc=(b−c)^2   =>(a+1991)^2 −4(1991a+1)=(b−c)^2   =>(a+1991)^2 −4×a×1991−4=(b−c)^2   =>(a−1991)^2 −4=(b−c)^2   =>(a−1991)^2 −(b−c)^2 =4  The diff of two squares of integers is 4.  This is possible if and only if b−c=0  =>(a−1991)^2 −2^2 =0  =>(a−1991−2)(a−1991+2)=0  =>a=1993 or a=1989
Sol(x+b)(x+c)=(x+a)(x+1991)+1=>x2+(b+c)x+bc=x2+(a+1991)x+1991a+1thenb+c=(a+1991)andbc=(1991a+1)weknowthat(b+c)24bc=(bc)2=>(a+1991)24(1991a+1)=(bc)2=>(a+1991)24×a×19914=(bc)2=>(a1991)24=(bc)2=>(a1991)2(bc)2=4Thediffoftwosquaresofintegersis4.Thisispossibleifandonlyifbc=0=>(a1991)222=0=>(a19912)(a1991+2)=0=>a=1993ora=1989
Commented by Tinkutara last updated on 23/Sep/17
Thank you very much Sir!
ThankyouverymuchSir!
Answered by mrW1 last updated on 24/Sep/17
if (x+a)(x+1991)+1 can be factored  as (x+b)(x+c), it means the equation  (x+a)(x+1991)+1=0   has two integer solutions: −b and −c.    (x+a)(x+1991)+1=0  x^2 +(a+1991)x+(1991a+1)=0  ⇒x=((−(a+1991)±(√((a+1991)^2 −4(1991a+1))))/2)  =((−(a+1991)±(√((a−1991)^2 −4)))/2)    case 1:  a is odd, i.e. a=2i+1  (2i+1−1991)^2 −4=(2k)^2   ⇒(i−995)^2 −1=k^2   ⇒(i−995)^2 −k^2 =1  ⇒(i+k−995)(i−k−995)=1  ⇒i+k−995=±1  ⇒i−k−995=±1  ⇒i=±1+995=996 or 994, k=0  ⇒a=2×996+1=1993 or  ⇒a=2×994+1=1989     case 2:  a is even, i.e. a=2i  (2i−1991)^2 −4=(2k+1)^2   (2i−1991)^2 −(2k+1)^2 =4  (2i−1991+2k+1)(2i−1991−2k−1)=4  (i+k−995)(i−k−996)=1  ⇒i+k−995=±1  ⇒i−k−996=±1  ⇒i=((±2+995+996)/2)≠integer  ⇒no solution for case 2    ⇒a=1989 or 1993
if(x+a)(x+1991)+1canbefactoredas(x+b)(x+c),itmeanstheequation(x+a)(x+1991)+1=0hastwointegersolutions:bandc.(x+a)(x+1991)+1=0x2+(a+1991)x+(1991a+1)=0x=(a+1991)±(a+1991)24(1991a+1)2=(a+1991)±(a1991)242case1:aisodd,i.e.a=2i+1(2i+11991)24=(2k)2(i995)21=k2(i995)2k2=1(i+k995)(ik995)=1i+k995=±1ik995=±1i=±1+995=996or994,k=0a=2×996+1=1993ora=2×994+1=1989case2:aiseven,i.e.a=2i(2i1991)24=(2k+1)2(2i1991)2(2k+1)2=4(2i1991+2k+1)(2i19912k1)=4(i+k995)(ik996)=1i+k995=±1ik996=±1i=±2+995+9962integernosolutionforcase2a=1989or1993
Commented by Tinkutara last updated on 24/Sep/17
Thank you very much Sir!  More specific and proving!
ThankyouverymuchSir!Morespecificandproving!

Leave a Reply

Your email address will not be published. Required fields are marked *