Menu Close

find-all-integers-n-for-which-13-4-n-2-1-




Question Number 94097 by Rio Michael last updated on 16/May/20
find all integers n  for which  13 ∣4(n^2 +1).
findallintegersnforwhich134(n2+1).
Commented by Rasheed.Sindhi last updated on 17/May/20
This s equivalent to:                   13 ∣(n^2 +1)  ((n^2 +1)/(13))=k⇒13k−1=n^2   All k′s for which 13k−1 is  perfect square.  Some values of k:  k=2,5,25,34,74,89,...  n=5,8,18,21,31,34,44,...  General solutions:  n=13q+5,13q+8    ∀ q∈Z     .....  ...
Thissequivalentto:13(n2+1)n2+113=k13k1=n2Allksforwhich13k1isperfectsquare.Somevaluesofk:k=2,5,25,34,74,89,n=5,8,18,21,31,34,44,Generalsolutions:n=13q+5,13q+8qZ..
Answered by Rasheed.Sindhi last updated on 17/May/20
13 ∤ 4⇒13 ∣ (n^2 +1)  Let n=13k+i where k,i∈Z ∧ 0≤i≤12   n^2 +1=13^2 k^2 +2(13k)(i)+i^2 +1  13 ∣ (n^2 +1)⇒13∣{13^2 k^2 +2(13k)(i)+i^2 +1}        ⇒ 13 ∣ (i^2 +1)  In interval 0≤i≤12 only i=5,8  satisfy above.  Hence     n=13k+5,13k+8 are satisfying  values ∀ k∈Z
13413(n2+1)Letn=13k+iwherek,iZ0i12n2+1=132k2+2(13k)(i)+i2+113(n2+1)13{132k2+2(13k)(i)+i2+1}13(i2+1)Ininterval0i12onlyi=5,8satisfyabove.Hencen=13k+5,13k+8aresatisfyingvalueskZ
Answered by Rasheed.Sindhi last updated on 17/May/20
13 ∣4(n^2 +1) is aquivalent to:         13 ∣(n^2 +1)  ^• n:13k,13k+1,...,13k+4,13k+5,        13k+6,13k+7,13k+8,13k+9,        ...,13k+12  ^• For values of n written in black  We can easily prove that:                 13 ∤ (n^2 +1)      For example if n=13k+2      n^2 +1=13^2 k^2 +2.13k.2+5                 =13(13k^2 +4k)+5      ∴ 13 ∤ (n^2 +1)  ^• For values of n written in red  We can easily prove that:                 13 ∣ (n^2 +1)       For an example if n=13k+8       n^2 +1=13^2 k^2 +2.13k.8+65                  =13(13k^2 +16k+5)       ∴  13 ∣ (n^2 +1)  ^• Hence13 ∣ (n^2 +1) for only  13k+5 & 13k+8
134(n2+1)isaquivalentto:13(n2+1)n:13k,13k+1,,13k+4,13k+5,13k+6,13k+7,13k+8,13k+9,,13k+12ForvaluesofnwritteninblackWecaneasilyprovethat:13(n2+1)Forexampleifn=13k+2n2+1=132k2+2.13k.2+5=13(13k2+4k)+513(n2+1)ForvaluesofnwritteninredWecaneasilyprovethat:13(n2+1)Foranexampleifn=13k+8n2+1=132k2+2.13k.8+65=13(13k2+16k+5)13(n2+1)Hence13(n2+1)foronly13k+5&13k+8
Commented by Rio Michael last updated on 17/May/20
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *