Menu Close

Find-all-integers-n-such-that-n-2-n-1-n-2-1-




Question Number 17454 by Tinkutara last updated on 06/Jul/17
Find all integers n such that  (n^2  − n − 1)^(n + 2)  = 1
$$\mathrm{Find}\:\mathrm{all}\:\mathrm{integers}\:{n}\:\mathrm{such}\:\mathrm{that} \\ $$$$\left({n}^{\mathrm{2}} \:−\:{n}\:−\:\mathrm{1}\right)^{{n}\:+\:\mathrm{2}} \:=\:\mathrm{1} \\ $$
Answered by mrW1 last updated on 06/Jul/17
n^2 −n−1=1 if n is odd or even  (i)  n^2 −n−1=−1 if n is even  (ii)  n+2=0 and n^2 −n−1≠0   (iii)    n^2 −n−1=1  n^2 −n−2=0  (n−2)(n+1)=0  ⇒n=2 even  (ok)  ⇒n=−1 odd  (ok)    n^2 −n−1=−1  n(n−1)=0  ⇒n=0 even (ok)  ⇒n=1 odd (not ok)    n+2=0  n=−2 (ok)  n^2 −n−1=5≠0    ⇒all solutions: −2,−1,0,2
$$\mathrm{n}^{\mathrm{2}} −\mathrm{n}−\mathrm{1}=\mathrm{1}\:\mathrm{if}\:\mathrm{n}\:\mathrm{is}\:\mathrm{odd}\:\mathrm{or}\:\mathrm{even}\:\:\left(\mathrm{i}\right) \\ $$$$\mathrm{n}^{\mathrm{2}} −\mathrm{n}−\mathrm{1}=−\mathrm{1}\:\mathrm{if}\:\mathrm{n}\:\mathrm{is}\:\mathrm{even}\:\:\left(\mathrm{ii}\right) \\ $$$$\mathrm{n}+\mathrm{2}=\mathrm{0}\:\mathrm{and}\:\mathrm{n}^{\mathrm{2}} −\mathrm{n}−\mathrm{1}\neq\mathrm{0}\:\:\:\left(\mathrm{iii}\right) \\ $$$$ \\ $$$$\mathrm{n}^{\mathrm{2}} −\mathrm{n}−\mathrm{1}=\mathrm{1} \\ $$$$\mathrm{n}^{\mathrm{2}} −\mathrm{n}−\mathrm{2}=\mathrm{0} \\ $$$$\left(\mathrm{n}−\mathrm{2}\right)\left(\mathrm{n}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{n}=\mathrm{2}\:\mathrm{even}\:\:\left(\mathrm{ok}\right) \\ $$$$\Rightarrow\mathrm{n}=−\mathrm{1}\:\mathrm{odd}\:\:\left(\mathrm{ok}\right) \\ $$$$ \\ $$$$\mathrm{n}^{\mathrm{2}} −\mathrm{n}−\mathrm{1}=−\mathrm{1} \\ $$$$\mathrm{n}\left(\mathrm{n}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{n}=\mathrm{0}\:\mathrm{even}\:\left(\mathrm{ok}\right) \\ $$$$\Rightarrow\mathrm{n}=\mathrm{1}\:\mathrm{odd}\:\left(\mathrm{not}\:\mathrm{ok}\right) \\ $$$$ \\ $$$$\mathrm{n}+\mathrm{2}=\mathrm{0} \\ $$$$\mathrm{n}=−\mathrm{2}\:\left(\mathrm{ok}\right) \\ $$$$\mathrm{n}^{\mathrm{2}} −\mathrm{n}−\mathrm{1}=\mathrm{5}\neq\mathrm{0} \\ $$$$ \\ $$$$\Rightarrow\mathrm{all}\:\mathrm{solutions}:\:−\mathrm{2},−\mathrm{1},\mathrm{0},\mathrm{2} \\ $$
Commented by Tinkutara last updated on 06/Jul/17
Thanks Sir!
$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$
Commented by RasheedSoomro last updated on 06/Jul/17
Also n=−2
$$\mathrm{Also}\:\mathrm{n}=−\mathrm{2} \\ $$
Commented by mrW1 last updated on 06/Jul/17
you are right sir!
$$\mathrm{you}\:\mathrm{are}\:\mathrm{right}\:\mathrm{sir}! \\ $$
Commented by RasheedSoomro last updated on 09/Jul/17
 G ⊚^(⌢)   ⊚^(⌢)  _(⌣) D   approach!
$$\:\mathrm{G}\:\underset{\smile} {\overset{\frown} {\circledcirc}}\:\:\overset{\frown} {\circledcirc}\:\mathrm{D}\: \\ $$$$\mathrm{approach}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *