Question Number 118181 by mathocean1 last updated on 15/Oct/20
$${find}\:{all}\:{numbers}\:>\mathrm{1}\:{from}\:\mathbb{N}\:{which} \\ $$$${their}\:{cube}\:{are}\:<\mathrm{18360} \\ $$
Commented by mathocean1 last updated on 15/Oct/20
$${thanks} \\ $$
Answered by TANMAY PANACEA last updated on 15/Oct/20
$$\mathrm{18360}=\mathrm{3}×\mathrm{6120} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{3}×\mathrm{3}×\mathrm{2040} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{3}^{\mathrm{3}} ×\mathrm{680} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{3}^{\mathrm{3}} ×\mathrm{2}^{\mathrm{3}} ×\mathrm{85} \\ $$$$\mathrm{3}^{\mathrm{3}} ×\mathrm{2}^{\mathrm{3}} ×\mathrm{4}^{\mathrm{3}} <\mathrm{3}^{\mathrm{3}} ×\mathrm{2}^{\mathrm{3}} ×\mathrm{85}<\mathrm{3}^{\mathrm{3}} ×\mathrm{2}^{\mathrm{3}} ×\mathrm{5}^{\mathrm{3}} \\ $$$${so}\:{the}\:{numbers}\:{are} \\ $$$$\mathrm{2}^{\mathrm{3}} =\mathrm{8} \\ $$$$\mathrm{3}^{\mathrm{3}} =\mathrm{27} \\ $$$$\mathrm{4}^{\mathrm{3}} =\mathrm{64} \\ $$$$\mathrm{2}^{\mathrm{3}} ×\mathrm{3}^{\mathrm{3}} =\mathrm{216} \\ $$$$\mathrm{2}^{\mathrm{3}} ×\mathrm{4}^{\mathrm{3}} =\mathrm{512} \\ $$$$\mathrm{3}^{\mathrm{3}} ×\mathrm{4}^{\mathrm{3}} =\mathrm{144}×\mathrm{12}=\mathrm{1728} \\ $$$$\mathrm{2}^{\mathrm{3}} ×\mathrm{3}^{\mathrm{3}} ×\mathrm{4}^{\mathrm{3}} =\mathrm{13824} \\ $$$${so}\:{required}\:{answer} \\ $$$$\left\{\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{6},\mathrm{8},\mathrm{12},\mathrm{24}\right\} \\ $$
Commented by mathocean1 last updated on 15/Oct/20
$${thanks} \\ $$
Commented by mr W last updated on 15/Oct/20
$$\mathrm{27}^{\mathrm{3}} =\mathrm{19683}>\mathrm{18360}\: \\ $$$$\mathrm{26}^{\mathrm{3}} =\mathrm{17576}<\mathrm{18360}\:\checkmark \\ $$$$\Rightarrow\mathrm{2}\leqslant{n}\leqslant\mathrm{26} \\ $$