Menu Close

Find-all-positive-integers-n-for-which-5-n-1-is-divisible-by-7-




Question Number 113073 by bobhans last updated on 11/Sep/20
Find all positive integers n for   which 5^n +1 is divisible by 7
$$\mathrm{Find}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{integers}\:\mathrm{n}\:\mathrm{for}\: \\ $$$$\mathrm{which}\:\mathrm{5}^{\mathrm{n}} +\mathrm{1}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{7} \\ $$
Answered by john santu last updated on 11/Sep/20
  find all positive integers n such  that 5^n  + 1 divisible by 7  (sol): 5^n +1 ≡ 0 (mod 7 )  This can be rewritten 5^n ≡−1≡125 (mod 7)  However by Fermat′s Little Theorem  5^6  ≡1 (mod 7) . Morever it easy to  check that 5^2 ≠ 1(mod 7) and   5^3  ≠ 1 (mod 7). Hence we must   have n ≡ 3 (mod 6) or n=3+6k , k∈Z^+      ((JS)/(a math farmer))
$$\:\:{find}\:{all}\:{positive}\:{integers}\:{n}\:{such} \\ $$$${that}\:\mathrm{5}^{{n}} \:+\:\mathrm{1}\:{divisible}\:{by}\:\mathrm{7} \\ $$$$\left({sol}\right):\:\mathrm{5}^{{n}} +\mathrm{1}\:\equiv\:\mathrm{0}\:\left({mod}\:\mathrm{7}\:\right) \\ $$$${This}\:{can}\:{be}\:{rewritten}\:\mathrm{5}^{{n}} \equiv−\mathrm{1}\equiv\mathrm{125}\:\left({mod}\:\mathrm{7}\right) \\ $$$${However}\:{by}\:{Fermat}'{s}\:{Little}\:{Theorem} \\ $$$$\mathrm{5}^{\mathrm{6}} \:\equiv\mathrm{1}\:\left({mod}\:\mathrm{7}\right)\:.\:{Morever}\:{it}\:{easy}\:{to} \\ $$$${check}\:{that}\:\mathrm{5}^{\mathrm{2}} \neq\:\mathrm{1}\left({mod}\:\mathrm{7}\right)\:{and}\: \\ $$$$\mathrm{5}^{\mathrm{3}} \:\neq\:\mathrm{1}\:\left({mod}\:\mathrm{7}\right).\:{Hence}\:{we}\:{must}\: \\ $$$${have}\:{n}\:\equiv\:\mathrm{3}\:\left({mod}\:\mathrm{6}\right)\:{or}\:{n}=\mathrm{3}+\mathrm{6}{k}\:,\:{k}\in\mathbb{Z}^{+} \\ $$$$\:\:\:\frac{{JS}}{{a}\:{math}\:{farmer}} \\ $$
Commented by bemath last updated on 11/Sep/20
✓thank you
$$\checkmark\mathrm{thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *