Menu Close

find-all-prime-p-and-q-such-that-p-2-p-37q-2-q-




Question Number 174062 by Tawa11 last updated on 23/Jul/22
find all prime p and q  such that    p^2   −  p    =   37q^2   −  q
findallprimepandqsuchthatp2p=37q2q
Commented by Rasheed.Sindhi last updated on 24/Jul/22
≪_• ^•  SUCCESSFUL  Approach_• ^• _(−) ^(−) ≫   p^    −  p    =     q^    −  q  p^2 −q^2 =36q^2 +p−q  p^2 −q^2 −(p−q)=36q^2   (p−q)(p+q−1)=36q^2   (((p−q)(p+q−1))/q^2 )=36   { (((((p−q)/q))(((p+q−1)/q))=36)),(((((p−q)/q^2 ))(p+q−1)=36)),(((p−q)(((p+q−1)/q^2 ))=36)) :}    { ((^★ ((p/q)−1)((p/q)+((q−1)/q))=36 (false))),((^(★★) (((p−q)/q^2 ))(p+q−1)=36)),(((p−q)(((p+q−1)/q^2 ))=36 (only possible case))) :}   ^★ q∣p⇒q=p [∵ p,q∈P]         p=q⇒(p/q)=1 and this make^★ false.  ^(★★)   ((p−q)/q^2 ) is impossible as p,q∈P    p−q=k ∧ ((p+q−1)/q^2 )=((36)/k) ; k∣36  p−q=k_((i))  ∧ p+q=((36q^2 )/k)+1_((ii))   (ii)−(i):  2q=(((36q^2 )/k)+1)−k  2qk=36q^2 +k−k^2   36q^2 −2kq+k−k^2 =0  q=((2k±(√(4k^2 −4(36)(k−k^2 ))))/(72))     =((2k±2(√(k^2 −36k+36k^2 )))/(72))     =((k±(√(37k^2 −36k)))/(36))∈P ∧ k∣36  Possible candidates for k:  ±1,±2,±3,±4,±6,±9,±12,±18,±36  Only successful candidate for k is 36  k=36⇒ { ((q=7,p=43)),((q=−5,p=31)) :}
SUCCESSFULApproachpp=qqp2q2=36q2+pqp2q2(pq)=36q2(pq)(p+q1)=36q2(pq)(p+q1)q2=36{(pqq)(p+q1q)=36(pqq2)(p+q1)=36(pq)(p+q1q2)=36{(pq1)(pq+q1q)=36(false)(pqq2)(p+q1)=36(pq)(p+q1q2)=36(onlypossiblecase)qpq=p[p,qP]p=qpq=1andthismakefalse.pqq2isimpossibleasp,qPpq=kp+q1q2=36k;k36pq=k(i)p+q=36q2k+1(ii)(ii)(i):2q=(36q2k+1)k2qk=36q2+kk236q22kq+kk2=0q=2k±4k24(36)(kk2)72=2k±2k236k+36k272=k±37k236k36Pk36Possiblecandidatesfork:±1,±2,±3,±4,±6,±9,±12,±18,±36Onlysuccessfulcandidateforkis36k=36{q=7,p=43q=5,p=31
Commented by Tawa11 last updated on 25/Jul/22
Wow, God bless you sir.
Wow,Godblessyousir.
Commented by MathematicalUser2357 last updated on 26/Feb/25
It′s so funny where: q such that p^2 −p=37
Itssofunnywhere:qsuchthatp2p=37
Answered by Rasheed.Sindhi last updated on 24/Jul/22
p^2 −p=37q^2 −q ;       p,q∈P   p(p−1)=q(37q−1)  p=q ∨ p∣(37q−1)  •p=q ∧ p−1=37q−1⇒p−1=37p−1     ⇒p=0∉P    ∴ p≠q     • p∣(37q−1) ∧ p,q satisfy the given relation.     q=2⇒37q−1=73⇒p=73   ×     q=3⇒37q−1=110⇒p=2,5,11 ×     q=5⇒37q−1=184⇒p=2,23 ×     q=7^(✓) ⇒37q−1=258⇒p=2^(×) ,3^(×) ,43^(✓)   (p,q)=(43,7)  Continue
p2p=37q2q;p,qPp(p1)=q(37q1)p=qp(37q1)p=qp1=37q1p1=37p1p=0Ppqp(37q1)p,qsatisfythegivenrelation.q=237q1=73p=73×q=337q1=110p=2,5,11×q=537q1=184p=2,23×q=737q1=258p=2×,3×,43(p,q)=(43,7)Continue
Answered by Rasheed.Sindhi last updated on 24/Jul/22
 p^2   −  p    =   37q^2   −  q   p^2   −  p  + q −  37q^2  = 0  p=((1±(√(1−4q(1−37q))))/2)  p=((1±(√(148q^2 −4q+1)))/2)  p=((1±(√((37(148q^2 )−37(4q)+37)/(37))))/2)  p=((1±(√((74^2 q^2 −148q+1+37−1)/(37))))/2)  p=((1±(√((74^2 q^2 +148q+1−296q+37−1)/(37))))/2)  p=((1±(√(((74q+1)^2 +36−296q)/(37))))/2)  p=((1±(√(((74q+1)^2 −4(74q−9))/(37))))/2)  △=(((74q+1)^2 −4(74q−9))/(37))   is perfect square integer.  For q=7 , △ is 85^2    q=7⇒p=43   .o.......
p2p=37q2qp2p+q37q2=0p=1±14q(137q)2p=1±148q24q+12p=1±37(148q2)37(4q)+37372p=1±742q2148q+1+371372p=1±742q2+148q+1296q+371372p=1±(74q+1)2+36296q372p=1±(74q+1)24(74q9)372=(74q+1)24(74q9)37isperfectsquareinteger.Forq=7,is852q=7p=43.o.
Commented by Tawa11 last updated on 24/Jul/22
God bless you sir. I appreciate.
Godblessyousir.Iappreciate.

Leave a Reply

Your email address will not be published. Required fields are marked *