Question Number 174062 by Tawa11 last updated on 23/Jul/22

Commented by Rasheed.Sindhi last updated on 24/Jul/22
![≪_• ^• SUCCESSFUL Approach_• ^• _(−) ^(−) ≫ p^ − p = q^ − q p^2 −q^2 =36q^2 +p−q p^2 −q^2 −(p−q)=36q^2 (p−q)(p+q−1)=36q^2 (((p−q)(p+q−1))/q^2 )=36 { (((((p−q)/q))(((p+q−1)/q))=36)),(((((p−q)/q^2 ))(p+q−1)=36)),(((p−q)(((p+q−1)/q^2 ))=36)) :} { ((^★ ((p/q)−1)((p/q)+((q−1)/q))=36 (false))),((^(★★) (((p−q)/q^2 ))(p+q−1)=36)),(((p−q)(((p+q−1)/q^2 ))=36 (only possible case))) :} ^★ q∣p⇒q=p [∵ p,q∈P] p=q⇒(p/q)=1 and this make^★ false. ^(★★) ((p−q)/q^2 ) is impossible as p,q∈P p−q=k ∧ ((p+q−1)/q^2 )=((36)/k) ; k∣36 p−q=k_((i)) ∧ p+q=((36q^2 )/k)+1_((ii)) (ii)−(i): 2q=(((36q^2 )/k)+1)−k 2qk=36q^2 +k−k^2 36q^2 −2kq+k−k^2 =0 q=((2k±(√(4k^2 −4(36)(k−k^2 ))))/(72)) =((2k±2(√(k^2 −36k+36k^2 )))/(72)) =((k±(√(37k^2 −36k)))/(36))∈P ∧ k∣36 Possible candidates for k: ±1,±2,±3,±4,±6,±9,±12,±18,±36 Only successful candidate for k is 36 k=36⇒ { ((q=7,p=43)),((q=−5,p=31)) :}](https://www.tinkutara.com/question/Q174101.png)
Commented by Tawa11 last updated on 25/Jul/22

Commented by MathematicalUser2357 last updated on 26/Feb/25

Answered by Rasheed.Sindhi last updated on 24/Jul/22

Answered by Rasheed.Sindhi last updated on 24/Jul/22

Commented by Tawa11 last updated on 24/Jul/22
