Menu Close

find-all-real-solutions-2-x-2-x-2-3-2x-4-1-i-what-if-x-is-permitted-to-be-complex-number-ii-what-if-1-1-2n-




Question Number 37382 by mondodotto@gmail.com last updated on 12/Jun/18
find all real solutions  (2−x^2 )^(x^2 −3(√(2x))+4) =1  i}what if x is permitted  to be complex number  ii}what if 1=(−1)^(2n) ?
findallrealsolutions(2x2)x232x+4=1i}whatifxispermittedtobecomplexnumberii}whatif1=(1)2n?
Commented by math khazana by abdo last updated on 12/Jun/18
(e)⇒2−x^2 =1  or  x^2  −3(√2)x +4 =0 but  2−x^2 =1 ⇒x^2 =1⇒ x=+^− 1  x^2  −3(√2)x+4=0  Δ=(−3(√2))^2  −4.4=18−16=2  x_1 = ((3(√2)+(√2))/2) =2(√2)   and x_2 =((3(√2) −(√2))/2) =(√2)  if x is at interior of(√(...))    chang.(√x)=t give  t^4  −3(√2)t +4 =0   Δ = 18−16=2  t^2  = 2(√2)  or  t^2 = (√2)⇒ t=+^− (√(2(√2)))   or  t =+^− (√(√2))
(e)2x2=1orx232x+4=0but2x2=1x2=1x=+1x232x+4=0Δ=(32)24.4=1816=2x1=32+22=22andx2=3222=2ifxisatinteriorofchang.x=tgivet432t+4=0Δ=1816=2t2=22ort2=2t=+22ort=+2
Commented by MJS last updated on 13/Jun/18
it′s not t^4 −3(√2)t^2 +4=0 but t^4 −3(√2)t+4=0  and it′s not this easy to solve it (not sure if  it′s possible to find exact solutions)
itsnott432t2+4=0butt432t+4=0anditsnotthiseasytosolveit(notsureifitspossibletofindexactsolutions)
Commented by math khazana by abdo last updated on 13/Jun/18
no sir Mjs the equation is x^2  −3(√(2x)) +4=0  so if we set x=t^2  we get t^4  −3(√2)t +4=0   there is no error sir(i have considered x at  the interior of (√(...)))
nosirMjstheequationisx232x+4=0soifwesetx=t2wegett432t+4=0thereisnoerrorsir(ihaveconsideredxattheinteriorof)
Answered by tanmay.chaudhury50@gmail.com last updated on 12/Jun/18
x^2 −3(√2) x+4=0  since(2−x^2 )^(x^2 −3(√(2 )) x+4) =1=(2−x^2 )^0   x^2 −2.x.((3(√2))/2)+(9/2)+4−(9/2)=0  (x−(3/( (√2))))^2 −(1/2)=0  in place of (9/(2 )) i put (9/4) correctd  x−(3/( (√2) ))=±(1/( (√2)))  x=(4/( (√2))) and(2/( (√2)))   x=2(√2)   and (√2)
x232x+4=0since(2x2)x232x+4=1=(2x2)0x22.x.322+92+492=0(x32)212=0inplaceof92iput94correctdx32=±12x=42and22x=22and2
Commented by mondodotto@gmail.com last updated on 12/Jun/18
does this satisfy the whole equation?? remember  the first part we only need real number
doesthissatisfythewholeequation??rememberthefirstpartweonlyneedrealnumber
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Jun/18
2−x^2 =1  x^2 =1  x=±1  i thought this portion is welunderstood
2x2=1x2=1x=±1ithoughtthisportioniswelunderstood
Commented by MJS last updated on 12/Jun/18
solutions of x^2 −3(√2)x+4=0 are real
solutionsofx232x+4=0arereal
Commented by prakash jain last updated on 12/Jun/18
question has (√(2x))  not (√2)x
questionhas2xnot2x
Answered by MJS last updated on 12/Jun/18
x∈R  (x^2 −3(√2)x+4)ln(2−x^2 )=0  x^2 −3(√2)x+4=0  x=((3(√2))/2)±(√((((3(√2))/2))^2 −4))=((3(√2))/2)±((√2)/2)  x_1 =(√2)       [this leads to 0^0  which is not defined but        I think lim_(x→(√2)) (2−x^2 )^(x^2 −3(√2)x+4) =1 so we can        count it]  x_2 =2(√2)  2−x^2 =1  x^2 =1  x_3 =−1  x_4 =1
xR(x232x+4)ln(2x2)=0x232x+4=0x=322±(322)24=322±22x1=2[thisleadsto00whichisnotdefinedbutIthinklimx2(2x2)x232x+4=1sowecancountit]x2=222x2=1x2=1x3=1x4=1

Leave a Reply

Your email address will not be published. Required fields are marked *