Question Number 31286 by 6123 last updated on 05/Mar/18
$${Find}\:{all}\:{set}\:{of}\:{ordered}\:{triple}/{s}\:\left({x},{y},{z}\right),\:\:{x},{y},{z}\in\Re,\:{such}\:{that} \\ $$$${x}−{y}=\mathrm{1}−{z} \\ $$$$\mathrm{3}\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)=\mathrm{5}\left(\mathrm{1}−{z}^{\mathrm{2}} \right) \\ $$$$\mathrm{7}\left({x}^{\mathrm{3}} −{y}^{\mathrm{3}} \right)=\mathrm{19}\left(\mathrm{1}−{z}^{\mathrm{3}} \right). \\ $$$${Please}\:{show}\:{your}\:{solution}. \\ $$
Commented by 6123 last updated on 06/Mar/18
$${Thank}\:{you}!! \\ $$
Answered by MJS last updated on 05/Mar/18
$$\mathrm{obviously}\:\mathrm{all}\:\mathrm{triples} \\ $$$$\left({x},{y},\mathrm{1}\right)\:\mathrm{with}\:{x}={y}\in\mathbb{R}\:\mathrm{solve}\:\mathrm{the} \\ $$$$\mathrm{given}\:\mathrm{equations} \\ $$$$ \\ $$$$\mathrm{3}\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)=\mathrm{5}\left(\mathrm{1}−{z}\right)\left(\mathrm{1}+{z}\right) \\ $$$$\mathrm{from}\:\left({i}\right):\:\left(\mathrm{1}−{z}\right)=\left({x}−{y}\right) \\ $$$$\mathrm{3}\left({x}−{y}\right)\left({x}+{y}\right)=\mathrm{5}\left({x}−{y}\right)\left(\mathrm{1}+{z}\right) \\ $$$$\mathrm{3}\left({x}+{y}\right)=\mathrm{5}\left(\mathrm{1}+{z}\right) \\ $$$${x}=\frac{\mathrm{5}}{\mathrm{3}}\left(\mathrm{1}+{z}\right)−{y} \\ $$$$\mathrm{into}\:\left({i}\right):\:\frac{\mathrm{5}}{\mathrm{3}}\left(\mathrm{1}+{z}\right)−\mathrm{2}{y}=\mathrm{1}−{z} \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{4}}{\mathrm{3}}{z} \\ $$$${x}=\frac{\mathrm{4}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}{z}\:\left(\mathrm{from}\:\mathrm{above}\right) \\ $$$$\mathrm{into}\:\left({iii}\right): \\ $$$$\mathrm{7}\left(\left(\frac{\mathrm{4}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}{z}\right)^{\mathrm{3}} −\left(\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{4}}{\mathrm{3}}{z}\right)^{\mathrm{3}} \right)=\mathrm{19}−\mathrm{19}{z}^{\mathrm{3}} \\ $$$${z}^{\mathrm{3}} −\frac{\mathrm{7}}{\mathrm{2}}{z}^{\mathrm{2}} +\frac{\mathrm{7}}{\mathrm{2}}{z}−\mathrm{1}=\mathrm{0} \\ $$$$\left({z}−\mathrm{1}\right)\left({z}^{\mathrm{2}} −\frac{\mathrm{5}}{\mathrm{2}}{z}+\mathrm{1}\right)=\mathrm{0} \\ $$$${z}_{\mathrm{1}} =\mathrm{1};\:{z}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}};\:{z}_{\mathrm{3}} =\mathrm{2} \\ $$$${x}_{\mathrm{1}} =\frac{\mathrm{5}}{\mathrm{3}};\:{x}_{\mathrm{2}} =\frac{\mathrm{3}}{\mathrm{2}};\:{x}_{\mathrm{3}} =\mathrm{2} \\ $$$${y}_{\mathrm{1}} =\frac{\mathrm{5}}{\mathrm{3}};\:{y}_{\mathrm{2}} =\mathrm{1};\:{y}_{\mathrm{3}} =\mathrm{3} \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{have} \\ $$$$\left({r};{r};\mathrm{1}\right)\:\mathrm{with}\:{r}\in\mathbb{R} \\ $$$$\left(\frac{\mathrm{3}}{\mathrm{2}};\mathrm{1};\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\left(\mathrm{2};\mathrm{3};\mathrm{2}\right) \\ $$
Commented by 6123 last updated on 06/Mar/18
$${Thank}\:{you}!!! \\ $$