Menu Close

Find-all-solution-7cos-3x-1-3-for-x-over-the-interval-0-2pi-




Question Number 126005 by bramlexs22 last updated on 16/Dec/20
  Find all solution 7cos (3x)−1= 3   for x over the interval [ 0,2π ]
$$\:\:{Find}\:{all}\:{solution}\:\mathrm{7cos}\:\left(\mathrm{3}{x}\right)−\mathrm{1}=\:\mathrm{3}\: \\ $$$${for}\:{x}\:{over}\:{the}\:{interval}\:\left[\:\mathrm{0},\mathrm{2}\pi\:\right]\: \\ $$
Commented by liberty last updated on 16/Dec/20
 7 cos (3x)=4 ⇒cos (3x)=(4/7)    3x = cos^(−1) ((4/7)) = 0.963   3x =  { ((0.963+k.2π)),((−0.963+k.2π)) :} ⇔ x= { ((0.321+((2kπ)/3))),((−0.321+((2kπ)/3))) :}
$$\:\mathrm{7}\:\mathrm{cos}\:\left(\mathrm{3}{x}\right)=\mathrm{4}\:\Rightarrow\mathrm{cos}\:\left(\mathrm{3}{x}\right)=\frac{\mathrm{4}}{\mathrm{7}}\: \\ $$$$\:\mathrm{3}{x}\:=\:\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{4}}{\mathrm{7}}\right)\:=\:\mathrm{0}.\mathrm{963} \\ $$$$\:\mathrm{3}{x}\:=\:\begin{cases}{\mathrm{0}.\mathrm{963}+{k}.\mathrm{2}\pi}\\{−\mathrm{0}.\mathrm{963}+{k}.\mathrm{2}\pi}\end{cases}\:\Leftrightarrow\:{x}=\begin{cases}{\mathrm{0}.\mathrm{321}+\frac{\mathrm{2}{k}\pi}{\mathrm{3}}}\\{−\mathrm{0}.\mathrm{321}+\frac{\mathrm{2}{k}\pi}{\mathrm{3}}}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *