Menu Close

find-all-solutions-for-z-C-z-i-1-2-1-2-i-z-1-i-1-i-




Question Number 60039 by MJS last updated on 17/May/19
find all solutions for z∈C  z^i =(1/2)−(1/2)i  z^(1−i) =1+i
findallsolutionsforzCzi=1212iz1i=1+i
Commented by maxmathsup by imad last updated on 18/May/19
 we have z^i  =e^(iln(z))   so if z=r e^(iθ)   we get   ln(z) =ln(r)+iθ ⇒z^i  =e^(i{ln(r)+iθ})  =e^(−θ)  e^(iln(r)) =e^(−θ) {cos(ln(r) +isin(ln(r)}  z^i =(1/2) −(1/2)i ⇒ e^(−θ) cos(ln(r))=(1/2) and e^(−θ)  sin(ln(r))=−(1/2) ⇒  e^(−2θ)  {cos^2 (lnr) +sin^2 (ln(r))} =(1/4) +(1/4) =(1/2) ⇒e^(−2θ) =(1/2) ⇒−2θ =−ln(2)  ⇒θ =((ln(2))/2)  also we have    ((sin(lnr))/(cos(lnr))) =−1 ⇒tan(lnr) =−1 ⇒  ln(r) =arctan(−1) =−(π/4) ⇒r =e^(−(π/4))  ⇒z =e^(−(π/4))  e^(i((ln(2))/2))   .
wehavezi=eiln(z)soifz=reiθwegetln(z)=ln(r)+iθzi=ei{ln(r)+iθ}=eθeiln(r)=eθ{cos(ln(r)+isin(ln(r)}zi=1212ieθcos(ln(r))=12andeθsin(ln(r))=12e2θ{cos2(lnr)+sin2(ln(r))}=14+14=12e2θ=122θ=ln(2)θ=ln(2)2alsowehavesin(lnr)cos(lnr)=1tan(lnr)=1ln(r)=arctan(1)=π4r=eπ4z=eπ4eiln(2)2.
Commented by maxmathsup by imad last updated on 18/May/19
in my solution i have taken the principal determination of log.
inmysolutionihavetakentheprincipaldeterminationoflog.
Commented by maxmathsup by imad last updated on 19/May/19
all solution for this equation are Z_n =e^(−(π/4))  e^(i(((ln(2))/2) +2nπ))
allsolutionforthisequationareZn=eπ4ei(ln(2)2+2nπ)
Answered by tanmay last updated on 17/May/19
(A+iB)^(P+iQ)   =e^((P+iQ)Log(A+iB))   Log(A+iB)  A=rcosθ    B=rsinθ  Log(re^(iθ) )  =Log_e (re^(i(2kπ+θ))   =log_e r+i(2kπ+θ)  =(1/2)log_e (A^2 +B^2 )+i[2kπ+tan^(−1) ((B/A))]  e^((P+iQ)[(1/2)log(A^2 +B^2 )+i{2kπ+tan^(−1) ((B/A))}])   e^p ×e^([{−Q(2kπ+tan^(−1) ((B/A))}+i(Q/2)log(A^2 +B^2 )])   e^P ×e^(−Q(2kπ+tan^(−1) ((B/A))) ×e^(i×(Q/2)log(A^2 +B^2 ))   e^(P−Q(2kπ+tan^(−1) ((B/A))) ×[cos(((Qlog(A^2 +B^2 ))/2))+isin(((Qlog(A^2 +B^2 ))/2))]  wait sir...  now put P=0  and Q=1  e^(−(2kπ+tan^(−1) ((B/A)))) ×[cos(((log(A^2 +B^2 ))/2))+isin(((log(A^2 +B^2 )/2))]  still[to go...
(A+iB)P+iQ=e(P+iQ)Log(A+iB)Log(A+iB)A=rcosθB=rsinθLog(reiθ)=Loge(rei(2kπ+θ)=loger+i(2kπ+θ)=12loge(A2+B2)+i[2kπ+tan1(BA)]e(P+iQ)[12log(A2+B2)+i{2kπ+tan1(BA)}]ep×e[{Q(2kπ+tan1(BA)}+iQ2log(A2+B2)]eP×eQ(2kπ+tan1(BA)×ei×Q2log(A2+B2)ePQ(2kπ+tan1(BA)×[cos(Qlog(A2+B2)2)+isin(Qlog(A2+B2)2)]waitsirnowputP=0andQ=1e(2kπ+tan1(BA))×[cos(log(A2+B2)2)+isin(log(A2+B22)]still[togo
Commented by MJS last updated on 18/May/19
nice until here. thanks a lot!  I′m really not sure how to solve these, will  look into it soon...
niceuntilhere.thanksalot!Imreallynotsurehowtosolvethese,willlookintoitsoon
Answered by Smail last updated on 18/May/19
(1)z^i =(1/2)−(1/2)i=(1/( (√2)))e^(i(π/4)) =2^(−(1/2)) e^(i((π/4)+2kπ))   z=2^(−(1/(2i))) e^((π/4)+2kπ) =2^(i/2) e^((π/4)+2kπ)   =e^((i/2)ln2) ×e^((π/4)+2kπ)   z=e^((π/4)+2kπ) e^(i((ln2)/2)) =e^((π/4)+2kπ) 2^(i/2)   (2)z^(1−i) =1+i=(√2)e^(i((π/4)+2kπ)) =2^(1/2) e^(i((π/4)+2kπ))   z=2^(1/(2(1−i))) e^((i/(1−i))(π/4+2kπ)) =2^((1+i)/4) ×e^(((i−1)/2)((π/4)+2kπ))   =2^(1/4) ×e^((i/4)ln2) ×e^((i/2)((π/4)+2kπ)) ×e^(−(1/2)((π/4)+2kπ))   z=(2)^(1/4) e^(−((π/4+2kπ)/2)) ×e^(i((π/4)+2kπ+((ln2)/4)))
(1)zi=1212i=12eiπ4=212ei(π4+2kπ)z=212ieπ4+2kπ=2i2eπ4+2kπ=ei2ln2×eπ4+2kπz=eπ4+2kπeiln22=eπ4+2kπ2i/2(2)z1i=1+i=2ei(π4+2kπ)=212ei(π4+2kπ)z=212(1i)ei1i(π/4+2kπ)=21+i4×ei12(π4+2kπ)=214×ei4ln2×ei2(π4+2kπ)×e12(π4+2kπ)z=24eπ/4+2kπ2×ei(π4+2kπ+ln24)
Commented by MJS last updated on 18/May/19
thank you so far. but which values of k are  appropriate?
thankyousofar.butwhichvaluesofkareappropriate?

Leave a Reply

Your email address will not be published. Required fields are marked *