Menu Close

Find-all-solutions-of-x-3-12x-8-0-




Question Number 61923 by naka3546 last updated on 12/Jun/19
Find  all  solutions  of              x^3  − 12x + 8 =  0
$${Find}\:\:{all}\:\:{solutions}\:\:{of} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{3}} \:−\:\mathrm{12}{x}\:+\:\mathrm{8}\:=\:\:\mathrm{0} \\ $$
Answered by MJS last updated on 12/Jun/19
x^3 +px+q=0    p=−12  q=8  D=(p^3 /(27))+(q^2 /4)=−48<0 ⇒ trigonometric method  x_k =((2(√(−3p)))/3)sin (((2πk)/3)+(1/3)arcsin ((3(√3)q)/(2(√(−p^3 ))))) with k=0, 1, 2  x_0 =4sin (π/(18))  x_1 =4cos ((2π)/9)  x_2 =−4cos (π/9)
$${x}^{\mathrm{3}} +{px}+{q}=\mathrm{0} \\ $$$$ \\ $$$${p}=−\mathrm{12} \\ $$$${q}=\mathrm{8} \\ $$$${D}=\frac{{p}^{\mathrm{3}} }{\mathrm{27}}+\frac{{q}^{\mathrm{2}} }{\mathrm{4}}=−\mathrm{48}<\mathrm{0}\:\Rightarrow\:\mathrm{trigonometric}\:\mathrm{method} \\ $$$${x}_{{k}} =\frac{\mathrm{2}\sqrt{−\mathrm{3}{p}}}{\mathrm{3}}\mathrm{sin}\:\left(\frac{\mathrm{2}\pi{k}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arcsin}\:\frac{\mathrm{3}\sqrt{\mathrm{3}}{q}}{\mathrm{2}\sqrt{−{p}^{\mathrm{3}} }}\right)\:\mathrm{with}\:{k}=\mathrm{0},\:\mathrm{1},\:\mathrm{2} \\ $$$${x}_{\mathrm{0}} =\mathrm{4sin}\:\frac{\pi}{\mathrm{18}} \\ $$$${x}_{\mathrm{1}} =\mathrm{4cos}\:\frac{\mathrm{2}\pi}{\mathrm{9}} \\ $$$${x}_{\mathrm{2}} =−\mathrm{4cos}\:\frac{\pi}{\mathrm{9}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *