Menu Close

Find-all-solutions-of-x-real-numbers-f-1-x-f-x-




Question Number 64851 by naka3546 last updated on 22/Jul/19
Find  all  solutions  of  x  real  numbers           f^(−1) (x)  =  f(x)
$${Find}\:\:{all}\:\:{solutions}\:\:{of}\:\:{x}\:\:{real}\:\:{numbers}\: \\ $$$$\:\:\:\:\:\:\:\:{f}\:^{−\mathrm{1}} \left({x}\right)\:\:=\:\:{f}\left({x}\right) \\ $$
Commented by naka3546 last updated on 22/Jul/19
how  many  function  which  satisfy  that  condition .
$${how}\:\:{many}\:\:{function}\:\:{which}\:\:{satisfy}\:\:{that}\:\:{condition}\:. \\ $$
Commented by mr W last updated on 22/Jul/19
i think only one:  f(x)=x  f^(−1) (x)=x
$${i}\:{think}\:{only}\:{one}: \\ $$$${f}\left({x}\right)={x} \\ $$$${f}^{−\mathrm{1}} \left({x}\right)={x} \\ $$
Commented by naka3546 last updated on 23/Jul/19
how  about  f(x) = −x + b  b ∈ R ?
$${how}\:\:{about}\:\:{f}\left({x}\right)\:=\:−{x}\:+\:{b} \\ $$$${b}\:\in\:\mathbb{R}\:? \\ $$
Commented by mr W last updated on 23/Jul/19
that is correct. there two possibilities:  the line y=x and each line perpendicular  to it, i.e. y=−x+c.
$${that}\:{is}\:{correct}.\:{there}\:{two}\:{possibilities}: \\ $$$${the}\:{line}\:{y}={x}\:{and}\:{each}\:{line}\:{perpendicular} \\ $$$${to}\:{it},\:{i}.{e}.\:{y}=−{x}+{c}. \\ $$
Commented by ~ À ® @ 237 ~ last updated on 25/Jul/19
   how about  f(x)=(a/x)   on R^(∗   )   with   a∈R
$$\:\:\:{how}\:{about}\:\:{f}\left({x}\right)=\frac{{a}}{{x}}\:\:\:{on}\:\mathbb{R}^{\ast\:\:\:} \:\:{with}\:\:\:{a}\in\mathbb{R} \\ $$
Commented by ~ À ® @ 237 ~ last updated on 25/Jul/19
    If  we considere  G  as the set of all the function  we know that when G is equiped of the law of composition it becomes a group  let  H={ f ∈G  /    f^(−1) =f  }     H is sub−group not empty of G  we just know that the order of H is 2   but  the question is about cardH=?  to be continued
$$ \\ $$$$ \\ $$$${If}\:\:{we}\:{considere}\:\:{G}\:\:{as}\:{the}\:{set}\:{of}\:{all}\:{the}\:{function} \\ $$$${we}\:{know}\:{that}\:{when}\:{G}\:{is}\:{equiped}\:{of}\:{the}\:{law}\:{of}\:{composition}\:{it}\:{becomes}\:{a}\:{group} \\ $$$${let}\:\:{H}=\left\{\:{f}\:\in{G}\:\:/\:\:\:\:{f}^{−\mathrm{1}} ={f}\:\:\right\}\:\:\:\:\:{H}\:{is}\:{sub}−{group}\:{not}\:{empty}\:{of}\:{G} \\ $$$${we}\:{just}\:{know}\:{that}\:{the}\:{order}\:{of}\:{H}\:{is}\:\mathrm{2}\:\:\:{but}\:\:{the}\:{question}\:{is}\:{about}\:{cardH}=? \\ $$$${to}\:{be}\:{continued} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *