Menu Close

find-all-such-numbers-if-we-make-its-last-digit-say-k-as-its-first-digit-the-number-becomes-k-times-large-as-before-k-k-k-k-




Question Number 103888 by mr W last updated on 18/Jul/20
find all such numbers:  if we make its last digit, say k, as its  first digit, the number becomes k  times large as before.  (□□...□k)→(k□□...□)=k×(□□...□k)
findallsuchnumbers:ifwemakeitslastdigit,sayk,asitsfirstdigit,thenumberbecomesktimeslargeasbefore.(◻◻◻k)(k◻◻◻)=k×(◻◻◻k)
Answered by MAB last updated on 18/Jul/20
x=Σ_(i=0) ^n 10^i a_i    where a_i ∈{0,1...9} and a_0 =k  x′=10^n k+Σ_(i=0) ^(n−1) 10^i a_(i+1) =kx  hence  10^n k+Σ_(i=0) ^(n−1) 10^i a_(i+1) =k^2 +Σ_(i=0) ^(n−1) 10^(i+1) a_(i+1)   (10^n −k)k=9Σ_(i=0) ^(n−1) 10^i a_(i+1)   (10^n −k)k=9kx  10^n −k=9x  k=1 and x=111...1
x=ni=010iaiwhereai{0,19}anda0=kx=10nk+n1i=010iai+1=kxhence10nk+n1i=010iai+1=k2+n1i=010i+1ai+1(10nk)k=9n1i=010iai+1(10nk)k=9kx10nk=9xk=1andx=1111
Commented by mr W last updated on 18/Jul/20
thanks sir!
thankssir!
Answered by mr W last updated on 18/Jul/20
let x=□□...□□_(↽ n digits⇁)  ≤10^n −1  N=□□...□□_(↽ n digits⇁) k=10x+k  k□□...□□_(↽ n digits⇁) =10^n k+x  10^n k+x=k(10x+k)  ⇒x=((k(10^n −k))/(10k−1)) ≤10^n −1    case k=1:  x=((10^n −1)/9)=111..111_(↽ n digits ⇁)   x=((10^n −1)/9)=111..111_(↽ n digits ⇁)   ⇒N=111..111_(↽ n digits ⇁) 1 with n∈N    case k=2:  x=((2(10^n −2))/(19))  we can find  n=18m−1 with m∈N  example n=17:  x=10526315789473784  ⇒N=105263157894737842  check:  2×105263157894737842     =210526315789473784  example n=35:  x=10526315789473784210526315789473784  ⇒N=105263157894737842105263157894737842  check:  2×105263157894737842105263157894737842     =210526315789473784210526315789473784    (to be continued)
letx=◻◻◻◻ndigits10n1N=◻◻◻◻ndigitsk=10x+kk◻◻◻◻ndigits=10nk+x10nk+x=k(10x+k)x=k(10nk)10k110n1casek=1:x=10n19=111..111ndigitsx=10n19=111..111ndigitsN=111..1111ndigitswithnNcasek=2:x=2(10n2)19wecanfindn=18m1withmNexamplen=17:x=10526315789473784N=105263157894737842check:2×105263157894737842=210526315789473784examplen=35:x=10526315789473784210526315789473784N=105263157894737842105263157894737842check:2×105263157894737842105263157894737842=210526315789473784210526315789473784(tobecontinued)
Commented by mr W last updated on 18/Jul/20
case k=3:  here we′ll try an other way to find  the number x.  note: in following the digits of the  number are displayed inversely, i.e.  the last digit is the left most.            39731427155698602685728443013  ×3   97314271556986026857284430139            ∣← last digit              first digit →∣  ⇒ x=103448275862068965517241379  ⇒N=1034482758620689655172413793  check:  3×1034482758620689655172413793     =3103448275862068965517241379  we see the digits of number N may be  repeated any times. so we have  infinite numbers which satisfy the  requirement.
casek=3:herewelltryanotherwaytofindthenumberx.note:infollowingthedigitsofthenumberaredisplayedinversely,i.e.thelastdigitistheleftmost.39731427155698602685728443013×397314271556986026857284430139∣←lastdigitfirstdigit→∣x=103448275862068965517241379N=1034482758620689655172413793check:3×1034482758620689655172413793=3103448275862068965517241379weseethedigitsofnumberNmayberepeatedanytimes.sowehaveinfinitenumberswhichsatisfytherequirement.
Commented by mr W last updated on 18/Jul/20
case k=4:  using the same method as before,           4652014  ×4  6520146  ⇒ x=10256  ⇒N=102564  check:  4×102564     =410256  similarly the digits of N may be  repeated any times. for example  N=102564102564102564
casek=4:usingthesamemethodasbefore,4652014×46520146x=10256N=102564check:4×102564=410256similarlythedigitsofNmayberepeatedanytimes.forexampleN=102564102564102564
Commented by mr W last updated on 18/Jul/20
case k=5:  x=((k(10^n −k))/(10k−1))=((5(10^n −5))/(7×7))  it seems to have no solution.
casek=5:x=k(10nk)10k1=5(10n5)7×7itseemstohavenosolution.
Commented by mr W last updated on 19/Jul/20
case k=6:  x=((k(10^n −k))/(10k−1))=((6(10^n −6))/(59))  it seems to have no solution.
casek=6:x=k(10nk)10k1=6(10n6)59itseemstohavenosolution.

Leave a Reply

Your email address will not be published. Required fields are marked *