Menu Close

Find-all-sum-of-all-x-interval-0-2pi-such-that-3cot-2-x-8-cot-x-3-0-




Question Number 119373 by bobhans last updated on 24/Oct/20
Find all sum of all x interval  [ 0, 2π ] such that 3cot^2 x + 8 cot x + 3 = 0
Findallsumofallxinterval[0,2π]suchthat3cot2x+8cotx+3=0
Commented by benjo_mathlover last updated on 24/Oct/20
consider the quadratic equation  3q^2 +8q+3 = 0 , with the roots are q_1 =((−8+2(√7))/6)  and q_2 =((−8−2(√7))/6). both roots are real and  their product equal to −1. Because y =cot x is a bijection  from the interval (0,π) to the real number , there  is a unique pair of numbers x_(1.1)  and x_(2.1)   with 0<x_(1.1) ,x_(2.1) <π such that cot x_(1.1) =q_1   and cot x_(2.1) =q_2 . Because q_1 and q_2  are  negative , (π/2)<x_(1.1)  ,x_(2.1)  < π and so   π<x_(1.1)  ,x_(2.1)  < 2π . Since tan x cot x=1  both tan x and cot x have period π, it follows that  1=tan x cot x=cot x cot ((π/2)−x)=cot x cot (((3π)/2)−x)  1= cot x_(1.1) . cot x_(2.1)  then x_(1.1) +x_(2.1) =((3π)/2)  likewise in interval (π,2π) there is unique  pair number x_(1.2) and x_(2.2)  satisfying the  conditions of the problem with x_(1.2) +x_(2.2) =((7π)/2)  Therefore x_(1.1) +x_(2.1) +x_(1.2) +x_(2.2) = ((3π)/2)+((7π)/2)=5π
considerthequadraticequation3q2+8q+3=0,withtherootsareq1=8+276andq2=8276.bothrootsarerealandtheirproductequalto1.Becausey=cotxisabijectionfromtheinterval(0,π)totherealnumber,thereisauniquepairofnumbersx1.1andx2.1with0<x1.1,x2.1<πsuchthatcotx1.1=q1andcotx2.1=q2.Becauseq1andq2arenegative,π2<x1.1,x2.1<πandsoπ<x1.1,x2.1<2π.Sincetanxcotx=1bothtanxandcotxhaveperiodπ,itfollowsthat1=tanxcotx=cotxcot(π2x)=cotxcot(3π2x)1=cotx1.1.cotx2.1thenx1.1+x2.1=3π2likewiseininterval(π,2π)thereisuniquepairnumberx1.2andx2.2satisfyingtheconditionsoftheproblemwithx1.2+x2.2=7π2Thereforex1.1+x2.1+x1.2+x2.2=3π2+7π2=5π
Answered by TANMAY PANACEA last updated on 24/Oct/20
tanx=a  (3/a^2 )+(8/a)+3=0  3+8a+3a^2 =0  a=((−8±(√(8^2 −4×3×3)))/(2×3))=((−8±2(√7))/(2×3))=((−4±(√7))/3)  tanx_1 =((−4+(√7))/3) =tanα       tanx_2 =((−4−(√7))/3)=tanβ  tan(α+β)=((tanα+tanβ)/(1−tanαtanβ))=(((−8)/3)/(1−(((16−7)/9))))=tan(π/2)  (α+β)=(π/2)  tan(α+β)=tan(π/2)=tan(π+(π/2))=tan((3π)/2)  tanα=tan(π+α)  tanβ=tan(π+β)  α+(α+π)+β+(β+π)+(α+β)+(π+α+β)  =4(α+β)+3π  =4((π/2))+3π=5π
tanx=a3a2+8a+3=03+8a+3a2=0a=8±824×3×32×3=8±272×3=4±73tanx1=4+73=tanαtanx2=473=tanβtan(α+β)=tanα+tanβ1tanαtanβ=831(1679)=tanπ2(α+β)=π2tan(α+β)=tanπ2=tan(π+π2)=tan3π2tanα=tan(π+α)tanβ=tan(π+β)α+(α+π)+β+(β+π)+(α+β)+(π+α+β)=4(α+β)+3π=4(π2)+3π=5π
Commented by 1549442205PVT last updated on 24/Oct/20
Sir mistake at place (√(8^2 −4×3×3))  =(√(28))=2(√7)
Sirmistakeatplace824×3×3=28=27
Commented by TANMAY PANACEA last updated on 24/Oct/20
yes sir corrected
yessircorrected
Answered by MJS_new last updated on 24/Oct/20
3cot^2  x +8cot x +3=0  ((3cos^2  x)/(sin^2  x))+((8cos x)/(sin x))+3=0  ((3cos^2 +8cos x sin x +3sin^2  x)/(sin^2  x))=0  3+8cos x sin x =0  cos x sin x =−(3/8)  (1/2)sin 2x =−(3/8)  sin 2x =−(3/4)  x=nπ−(1/2)arcsin (3/4) ∨ x=nπ+(π/2)+(1/2)arcsin (3/4)  let α=(1/2)arcsin (3/4)  for 0≤x<2π we get  x=π−α∨x=2π−α∨x=(π/2)+α∨x=((3π)/2)+α  ⇒ sum of these is 5π
3cot2x+8cotx+3=03cos2xsin2x+8cosxsinx+3=03cos2+8cosxsinx+3sin2xsin2x=03+8cosxsinx=0cosxsinx=3812sin2x=38sin2x=34x=nπ12arcsin34x=nπ+π2+12arcsin34letα=12arcsin34for0x<2πwegetx=παx=2παx=π2+αx=3π2+αsumoftheseis5π
Answered by 1549442205PVT last updated on 24/Oct/20
3cot^2 x + 8 cot x + 3 = 0  Δ′=4^2 −9=7⇒cotx=((−4±(√7))/3)  ⇒tanx=(3/(−4±(√7)))=((3(−4∓(√7)))/9)=((−4∓(√7))/3)  Put α=tan^(−1) (((−4+(√7))/3)),β=tan^(−1) (((−4−(√7))/3))  α≈−24°17′42”,β≈−65°42′17”  Since α,β∈[0,2π] and tanx=tan(x+kπ)  we get α∈{155°42′17”,335°42′17”}  β∈{114°17′43”,294°17′43”}  ⇒α_1 +α_2 +β_1 +β_2 =900°  Thus,Sum of all the angles satisfying  given equation equal to 900°
3cot2x+8cotx+3=0Δ=429=7cotx=4±73tanx=34±7=3(47)9=473Putα=tan1(4+73),β=tan1(473)α24°1742,β65°4217Sinceα,β[0,2π]andtanx=tan(x+kπ)wegetα{155°4217,335°4217}β{114°1743,294°1743}α1+α2+β1+β2=900°Thus,Sumofalltheanglessatisfyinggivenequationequalto900°
Answered by Bird last updated on 24/Oct/20
3cotan^2 x+8cotanx +3=0 ⇒  (3/(tan^2 x)) +(8/(tanx)) +3 =0 ⇒  3+8tanx +3tan^2 x =0 ⇒  3tan^2 x+8tanx +3 =0  tanx=u ⇒3u^2 +8u+3=0  Δ^′  =4^2 −9 =16−9 =7 ⇒  u_1 =((−4+(√7))/3) and u_2 =((−4−(√7))/3)  tanx=((−4+(√7))/3) ⇒x=arctan(((−4+(√7))/3))+nπ  tanx=((−4−(√7))/3) ⇒x=−arctan(((4+(√7))/3))+nπ  (n∈Z)
3cotan2x+8cotanx+3=03tan2x+8tanx+3=03+8tanx+3tan2x=03tan2x+8tanx+3=0tanx=u3u2+8u+3=0Δ=429=169=7u1=4+73andu2=473tanx=4+73x=arctan(4+73)+nπtanx=473x=arctan(4+73)+nπ(nZ)

Leave a Reply

Your email address will not be published. Required fields are marked *