Menu Close

Find-all-the-complex-number-in-the-rectangular-form-such-that-z-1-4-1-




Question Number 38284 by NECx last updated on 23/Jun/18
Find all the complex number in the  rectangular form such that  (z−1)^4 =−1
Findallthecomplexnumberintherectangularformsuchthat(z1)4=1
Commented by MrW3 last updated on 23/Jun/18
let z−1=r(cos θ+i sin θ)  ⇒r(cos 4θ+i sin 4θ)=−1  ⇒r=1  ⇒cos 4θ=−1, sin 4θ=0  ⇒4θ=(2n+1)π, n=0,1,2,3  ⇒θ=(π/4),((3π)/4),((5π)/4),((7π)/4)  (cos θ,sin θ)=(((√2)/2),((√2)/2)),(−((√2)/2),((√2)/2)),(−((√2)/2),−((√2)/2)),(((√2)/2),−((√2)/2))  z=(1+cos θ)+i sin θ  all values of z are:  z=(1+((√2)/2))+i ((√2)/2)  z=(1−((√2)/2))+i ((√2)/2)  z=(1−((√2)/2))−i ((√2)/2)  z=(1+((√2)/2))−i ((√2)/2)
letz1=r(cosθ+isinθ)r(cos4θ+isin4θ)=1r=1cos4θ=1,sin4θ=04θ=(2n+1)π,n=0,1,2,3θ=π4,3π4,5π4,7π4(cosθ,sinθ)=(22,22),(22,22),(22,22),(22,22)z=(1+cosθ)+isinθallvaluesofzare:z=(1+22)+i22z=(122)+i22z=(122)i22z=(1+22)i22
Commented by abdo.msup.com last updated on 23/Jun/18
let put z−1=x  (e)⇔x^4  =e^(iπ)   if x=r e^(iθ)   we get r^4  e^(i4θ)  =e^(i(2k+1)π)  ⇒r=1 and  4θ=(2k+1)π ⇒θ_k =(((2k+1)π)/4)  with k∈[[0,3]] and x_k =e^(i(((2k+1)π)/4))   ⇒z_k =x_k  +1= 1+e^(i(((2k+1)π)/4))   ⇒  z_0 =1+e^(i(π/4))   z_1 =1+e^(i((3π)/4))   z_2 =1+e^(i((5π)/4))   z_3 =1+e^(i((7π)/4))
letputz1=x(e)x4=eiπifx=reiθwegetr4ei4θ=ei(2k+1)πr=1and4θ=(2k+1)πθk=(2k+1)π4withk[[0,3]]andxk=ei(2k+1)π4zk=xk+1=1+ei(2k+1)π4z0=1+eiπ4z1=1+ei3π4z2=1+ei5π4z3=1+ei7π4
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Jun/18
z−1=(−1)^(1/4)   cosΠ=−1     z−1={cos(2nΠ+Π)+isin(2nΠ+Π)}^(1/4)   x+iy−1=cos(((2n+1)/4))+isin(((2n+1)/4))  (x−1)^2 +y^2 =cos^2 (((2n+1)/4))+sin^2 (((2n+1)/4))  (x−1)^2 +y^2 =1
z1=(1)14cosΠ=1z1={cos(2nΠ+Π)+isin(2nΠ+Π)}14x+iy1=cos(2n+14)+isin(2n+14)(x1)2+y2=cos2(2n+14)+sin2(2n+14)(x1)2+y2=1

Leave a Reply

Your email address will not be published. Required fields are marked *