Menu Close

Find-all-the-triples-of-positive-integers-x-y-z-so-that-x-y-2020-y-z-2020-is-a-rational-number-and-x-2-y-2-z-2-be-a-prime-number-




Question Number 97554 by 1549442205 last updated on 08/Jun/20
Find all the triples of positive integers (x;y;z)  so that ((x−y(√(2020)))/(y−z(√(2020)))) is a rational number  and x^2 +y^2 +z^2 be a prime number.
Findallthetriplesofpositiveintegers(x;y;z)sothatxy2020yz2020isarationalnumberandx2+y2+z2beaprimenumber.
Commented by Rasheed.Sindhi last updated on 09/Jun/20
((x−y(√(2020)))/(y−z(√(2020))))=((x−2y(√(505)))/(y−2z(√(505))))  =((x−2y(√(505)))/(y−2z(√(505))))×((y+2z(√(505)))/(y+2z(√(505))))  =((xy−2020yz+2xz(√(505))−2y^2 (√(505)))/(y^2 −2020z^2 ))  =((xy−2020yz+2(√(505))(xz−y^2 ))/(y^2 −2020z^2 ))  ⇒xz−y^2 =(√(505)) (Impossible ∵ x,y,z ∈Z^+ )
xy2020yz2020=x2y505y2z505=x2y505y2z505×y+2z505y+2z505=xy2020yz+2xz5052y2505y22020z2=xy2020yz+2505(xzy2)y22020z2xzy2=505(Impossiblex,y,zZ+)
Commented by prakash jain last updated on 08/Jun/20
or xz−y^2 =0
orxzy2=0
Commented by Rasheed.Sindhi last updated on 08/Jun/20
Thank you sir!
Thankyousir!
Commented by Rasheed.Sindhi last updated on 09/Jun/20
    If xz−y^2 =0      y^2 =xz  x^2 +y^2 +z^2 =x^2 +xz+z^2   =(x+z)^2 −xz=(x+z)^2 −y^2   (x+y+z)(x−y+z) ∈P  ⇒        x+y+z=1∧ x−y+z ∈P  (But x+y+z≠1 for x,y,z∈Z^+ )                               or        x−y+z=1∧ x+y+z ∈P  x−y+z=1⇒                 x=y∧z=1 ∣ y=z∧x=1   Let x=y=k ⇒x+y+z=2k+1    (Similarly y=z=k⇒x+y+z=2k+1)    ...  x=z=1  ....
Ifxzy2=0y2=xzx2+y2+z2=x2+xz+z2=(x+z)2xz=(x+z)2y2(x+y+z)(xy+z)Px+y+z=1xy+zP(Butx+y+z1forx,y,zZ+)orxy+z=1x+y+zPxy+z=1x=yz=1y=zx=1Letx=y=kx+y+z=2k+1(Similarlyy=z=kx+y+z=2k+1)x=z=1.
Commented by prakash jain last updated on 09/Jun/20
IF  x−y+z=1  y=x+z−1  y^2 =xz  (x+z−1)^2 =xz  x^2 +2x(z−1)+1=xz  x^2 +x(z−2)+(z−1)^2 =0  (z−2)^2 −4(z−1)^2  is whole square  ((z−2)+2(z−1))(z−2−2z+2)  =−z(3z−4)  z=1 is only option  x^2 −x=0  ⇒x=1,y=1  so 1,1,1 is the only solution.
IFxy+z=1y=x+z1y2=xz(x+z1)2=xzx2+2x(z1)+1=xzx2+x(z2)+(z1)2=0(z2)24(z1)2iswholesquare((z2)+2(z1))(z22z+2)=z(3z4)z=1isonlyoptionx2x=0x=1,y=1so1,1,1istheonlysolution.
Answered by 1549442205 last updated on 09/Jun/20
Let ((x−y(√(2020)))/(y−z(√(2020))))=(m/n),where m,n∈Z,gcd(m;n)=1  ⇔nx−2ny(√(505))=my−2mz(√(505))  ⇔(2mz−2ny)(√(505)) =my−nx  if 2mz−2ny≠0 then (√(505))=((my−nx)/(2mz−2ny))∈Q(set of  rational numbers)  This is a contradiction because (√(505)) be irrational number  Hence,we need must have  { ((2mz−2ny=0)),((my−nx=0)) :}  it follows that (m/n)=(x/y)=(y/z) ⇒y^2 =xz.Now we   denote gcd(x,z)=d⇒ { ((x=ad)),((z=bd)) :}  (1) with a,b∈N and gcd(a,b)=1  ⇒y^2 =abd^2 ⇒a=u^2 ,b=v^2 (u,v∈N^∗ )⇒y=uvd.Replace into  (1) we get x=u^2 d,z=v^2 d.  From this we get x^2 +y^2 +z^2 =d^2 (u^4 +u^2 v^2 +v^4 )  =d^2 [(u^2 +v^2 )^2 −u^2 v^2 ]=d^2 (u^2 −uv+v^2 )(u^2 +uv+v^2 )  From the condition x^2 +y^2 +z^2  is a prime we  infer that   { ((d^2 =1)),((u^2 −uv+v^2 =1)) :}.Therefore,  (u−v)^2 =1−uv≥0 ⇔   ^(u,v∈N^∗ ) u=v=1⇔x=y=z=1  Thus,(x;y;z)=(1;1;1) is unique triple satisfying  requirement  of the problem
Letxy2020yz2020=mn,wherem,nZ,gcd(m;n)=1nx2ny505=my2mz505(2mz2ny)505=mynxif2mz2ny0then505=mynx2mz2nyQ(setofrationalnumbers)Thisisacontradictionbecause505beirrationalnumberHence,weneedmusthave{2mz2ny=0mynx=0itfollowsthatmn=xy=yzy2=xz.Nowwedenotegcd(x,z)=d{x=adz=bd(1)witha,bNandgcd(a,b)=1y2=abd2a=u2,b=v2(u,vN)y=uvd.Replaceinto(1)wegetx=u2d,z=v2d.Fromthiswegetx2+y2+z2=d2(u4+u2v2+v4)=d2[(u2+v2)2u2v2]=d2(u2uv+v2)(u2+uv+v2)Fromtheconditionx2+y2+z2isaprimeweinferthat{d2=1u2uv+v2=1.Therefore,(uv)2=1uv0u,vNu=v=1x=y=z=1Thus,(x;y;z)=(1;1;1)isuniquetriplesatisfyingrequirementoftheproblem

Leave a Reply

Your email address will not be published. Required fields are marked *