Menu Close

find-all-the-values-of-in-the-interval-0-2pi-for-which-sin-3-sin-3cos-2-




Question Number 97994 by hardylanes last updated on 10/Jun/20
find all the values of θ, in the interval 0≤θ≤2π  for which sin 3θ−sin θ=(√(3cos 2θ))
findallthevaluesofθ,intheinterval0θ2πforwhichsin3θsinθ=3cos2θ
Answered by Rio Michael last updated on 10/Jun/20
i pressume your question is   sin 3θ − sin θ = (√3) cos 2θ for 0 ≤ θ ≤ 2π  Recall sin A − sin B = 2 cos (((A + B)/2)) sin (((A−B)/2))   ⇒ 2 cos (((3θ + θ)/2)) sin (((3θ−θ)/2)) = (√3) cos 2θ   ⇒ 2 cos 2θ sin θ = (√3) cos 2θ  ⇒ 2cos 2θ sin θ−(√3) cos 2θ = 0    cos 2θ(2 sin θ−(√3) ) = 0   ⇔ cos 2θ = 0 ⇒ 2θ = 2πn ± (π/2) ⇒ θ = (1/2)(2πn ± (π/2)) n ∈ Z^+       sin θ = ((√3)/2)  ⇒  πn + (−1)^n (π/3) n∈ Z^+   general solution θ =  { (((1/2)(2πn ± (π/2)))),((πn +(−1)^n (π/3))) :} n ∈ Z^+   n = 0, ⇒θ = (π/4), (π/3)   n = 1, ⇒ θ = ((4π)/3), ((3π)/4)  ⇒ solution S = {(π/4),(π/3),((4π)/3),((3π)/4)}
ipressumeyourquestionissin3θsinθ=3cos2θfor0θ2πRecallsinAsinB=2cos(A+B2)sin(AB2)2cos(3θ+θ2)sin(3θθ2)=3cos2θ2cos2θsinθ=3cos2θ2cos2θsinθ3cos2θ=0cos2θ(2sinθ3)=0cos2θ=02θ=2πn±π2θ=12(2πn±π2)nZ+sinθ=32πn+(1)nπ3nZ+generalsolutionθ={12(2πn±π2)πn+(1)nπ3nZ+n=0,θ=π4,π3n=1,θ=4π3,3π4solutionS={π4,π3,4π3,3π4}
Commented by hardylanes last updated on 10/Jun/20
thanks☆
Commented by Rio Michael last updated on 10/Jun/20
you are welcome.
youarewelcome.

Leave a Reply

Your email address will not be published. Required fields are marked *