Menu Close

Find-all-values-x-y-z-gt-0-such-that-x-y-2z-6-3-y-2-x-1-y-4-2-x-y-1-2y-2-x-2-y-log-2-z-4-




Question Number 161564 by HongKing last updated on 19/Dec/21
Find all values  x;y;z>0  such that:   { ((x + y + 2z = 6)),(((3/y)∙((2/x) + (1/y)) = 4∙((2/(x + y)) + (1/(2y)))^2 )),((x + 2^y  + log_2 z = 4)) :}
$$\mathrm{Find}\:\mathrm{all}\:\mathrm{values}\:\:\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:\:\mathrm{such}\:\mathrm{that}: \\ $$$$\begin{cases}{\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{2z}\:=\:\mathrm{6}}\\{\frac{\mathrm{3}}{\mathrm{y}}\centerdot\left(\frac{\mathrm{2}}{\mathrm{x}}\:+\:\frac{\mathrm{1}}{\mathrm{y}}\right)\:=\:\mathrm{4}\centerdot\left(\frac{\mathrm{2}}{\mathrm{x}\:+\:\mathrm{y}}\:+\:\frac{\mathrm{1}}{\mathrm{2y}}\right)^{\mathrm{2}} }\\{\mathrm{x}\:+\:\mathrm{2}^{\boldsymbol{\mathrm{y}}} \:+\:\mathrm{log}_{\mathrm{2}} \boldsymbol{\mathrm{z}}\:=\:\mathrm{4}}\end{cases} \\ $$
Commented by Rasheed.Sindhi last updated on 20/Dec/21
(x,y,z)=(1,1,2)
$$\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)=\left(\mathrm{1},\mathrm{1},\mathrm{2}\right) \\ $$
Answered by Rasheed.Sindhi last updated on 20/Dec/21
Assuming x,y,z∈Z^+   x+y+2z=6  x+y=6−2z⇒z=1,2  x+y=2(3−z)⇒x+y is even.  x+y=2=1+1 ∣ x+y=4=2+2=1+3=3+1  (x,y,z)=(1,1,2) , (2,2,1),(1,3,1),(3,1,1)  (1,1,2) satisfying all the three  equations.  ∴ (x,y,z)=(1,1,2)
$$\underline{\boldsymbol{{Assuming}}\:\boldsymbol{\mathrm{x}},\boldsymbol{\mathrm{y}},\boldsymbol{\mathrm{z}}\in\mathbb{Z}^{+} } \\ $$$$\mathrm{x}+\mathrm{y}+\mathrm{2z}=\mathrm{6} \\ $$$$\mathrm{x}+\mathrm{y}=\mathrm{6}−\mathrm{2z}\Rightarrow\mathrm{z}=\mathrm{1},\mathrm{2} \\ $$$$\mathrm{x}+\mathrm{y}=\mathrm{2}\left(\mathrm{3}−\mathrm{z}\right)\Rightarrow\mathrm{x}+\mathrm{y}\:{is}\:{even}. \\ $$$$\mathrm{x}+\mathrm{y}=\mathrm{2}=\mathrm{1}+\mathrm{1}\:\mid\:\mathrm{x}+\mathrm{y}=\mathrm{4}=\mathrm{2}+\mathrm{2}=\mathrm{1}+\mathrm{3}=\mathrm{3}+\mathrm{1} \\ $$$$\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)=\left(\mathrm{1},\mathrm{1},\mathrm{2}\right)\:,\:\left(\mathrm{2},\mathrm{2},\mathrm{1}\right),\left(\mathrm{1},\mathrm{3},\mathrm{1}\right),\left(\mathrm{3},\mathrm{1},\mathrm{1}\right) \\ $$$$\left(\mathrm{1},\mathrm{1},\mathrm{2}\right)\:{satisfying}\:{all}\:{the}\:{three} \\ $$$${equations}. \\ $$$$\therefore\:\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)=\left(\mathrm{1},\mathrm{1},\mathrm{2}\right) \\ $$
Commented by HongKing last updated on 20/Dec/21
very nice dear Sir thank you
$$\mathrm{very}\:\mathrm{nice}\:\mathrm{dear}\:\mathrm{Sir}\:\mathrm{thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *