Menu Close

find-an-explicit-formula-for-the-sequence-2-3-4-5-8-9-16-17-32-33-




Question Number 159222 by physicstutes last updated on 14/Nov/21
find an explicit formula for  the sequence  (2/3), (4/5), (8/9), ((16)/(17)), ((32)/(33)), ...
$$\mathrm{find}\:\mathrm{an}\:\mathrm{explicit}\:\mathrm{formula}\:\mathrm{for} \\ $$$$\mathrm{the}\:\mathrm{sequence} \\ $$$$\frac{\mathrm{2}}{\mathrm{3}},\:\frac{\mathrm{4}}{\mathrm{5}},\:\frac{\mathrm{8}}{\mathrm{9}},\:\frac{\mathrm{16}}{\mathrm{17}},\:\frac{\mathrm{32}}{\mathrm{33}},\:… \\ $$
Commented by MJS_new last updated on 14/Nov/21
a_n =1−((12)/(n^4 −6n^3 +23n^2 −18n+36))  a_n =(7/(33660))n^4 −((13)/(16830))n^3 −((767)/(33660))n^2 +((3433)/(16830))n+((818)/(1683))  ...
$${a}_{{n}} =\mathrm{1}−\frac{\mathrm{12}}{{n}^{\mathrm{4}} −\mathrm{6}{n}^{\mathrm{3}} +\mathrm{23}{n}^{\mathrm{2}} −\mathrm{18}{n}+\mathrm{36}} \\ $$$${a}_{{n}} =\frac{\mathrm{7}}{\mathrm{33660}}{n}^{\mathrm{4}} −\frac{\mathrm{13}}{\mathrm{16830}}{n}^{\mathrm{3}} −\frac{\mathrm{767}}{\mathrm{33660}}{n}^{\mathrm{2}} +\frac{\mathrm{3433}}{\mathrm{16830}}{n}+\frac{\mathrm{818}}{\mathrm{1683}} \\ $$$$… \\ $$
Answered by TheSupreme last updated on 14/Nov/21
a_n =(2^n /(2^n +1)) is one of the infinite solutions
$${a}_{{n}} =\frac{\mathrm{2}^{{n}} }{\mathrm{2}^{{n}} +\mathrm{1}}\:{is}\:{one}\:{of}\:{the}\:{infinite}\:{solutions} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *