Menu Close

find-and-from-R-0-pi-t-2-t-cos-nt-dt-1-n-2-for-all-number-n-from-N-then-find-n-1-1-n-2-




Question Number 27495 by abdo imad last updated on 07/Jan/18
find α and β from R /∫_0 ^π (αt^2 +βt)cos(nt)dt= (1/n^2 )  for all number n from N^(∗ )  then find  Σ_(n=1) ^∝   (1/n^2 ) .
findαandβfromR/0π(αt2+βt)cos(nt)dt=1n2forallnumbernfromNthenfindn=11n2.
Commented by abdo imad last updated on 19/Jan/18
let put I= ∫_0 ^π (αt^2  +βt)cos(nt)dt  I= Re ( ∫_0 ^π (αt^2 +βt)^ e^(int) t)  by parts  u= αt^2 +βt   and  v^′ = e^(int)   I= [(αt^2 +βt)(e^(int) /(in))  ]_0 ^π   − (1/(in))∫_0 ^π (2αt+β)e^(int) dt  =(1/(in))((απ^2 +βπ)(−1)^n ) −(1/(in)){[  (1/(in))(2αt+β) e^(int) ]_0 ^π −(1/(in))∫_0 ^π (2α)e^(int) dt}  we find  I= (1/n^2 ) ((2απ +β)(−1)^n −β)  I = (1/n^2 ) ∀n∈N^∗   ⇔ (2απ+β)(−1)^n  −β= 1 for alln  ⇔ β =−1 and 2απ−1=0 ⇒ α=(1/(2π)) and β=−1 so  (1/n^2 )= ∫_0 ^π ((1/(2π)) t^2 −t)cos(nt)dt  Σ_(n=1) ^∝  (1/n^2 )  =∫_0 ^π ((1/(2π))t^2 −t)( Σ_(n=1) ^∝  cos(nt))dt but  Σ_(n=1) ^∝  cos(nt)=Re(  Σ_(n=0) ^∝  (^ e^(it) )^n )−1=Re(  (1/(1−e^(it) )))−1  =Re(  (1/(2sin^2 ((t/2))−2isin((t/2))cos((t/2)))))  =Re (        (1/(−2isin((t/2)) e^(i(t/2)) ))) =Re(  (1/2)i((cos((t/2))−i sin((t/2)))/(sin((t/2)))))  = (1/2)−1=−(1/2)  Σ_(n=1) ^∝  (1/n^2 ) =−(1/2) ∫_0 ^π ((1/(2π))t^2 −t)dt  =−(1/(4π))  [ (t^3 /3)]_0 ^π  +(1/2) [ (t^2 /2)]_0 ^π   = (π^2 /4)−(1/(4π)) (π^3 /3)=(π^2 /4) −(π^2 /(12))  = ((3π^2  −π^2 )/(12)) = (π^2 /6).
letputI=0π(αt2+βt)cos(nt)dtI=Re(0π(αt2+βt)eintt)bypartsu=αt2+βtandv=eintI=[(αt2+βt)eintin]0π1in0π(2αt+β)eintdt=1in((απ2+βπ)(1)n)1in{[1in(2αt+β)eint]0π1in0π(2α)eintdt}wefindI=1n2((2απ+β)(1)nβ)I=1n2nN(2απ+β)(1)nβ=1forallnβ=1and2απ1=0α=12πandβ=1so1n2=0π(12πt2t)cos(nt)dtn=11n2=0π(12πt2t)(n=1cos(nt))dtbutn=1cos(nt)=Re(n=0(eit)n)1=Re(11eit)1=Re(12sin2(t2)2isin(t2)cos(t2))=Re(12isin(t2)eit2)=Re(12icos(t2)isin(t2)sin(t2))=121=12n=11n2=120π(12πt2t)dt=14π[t33]0π+12[t22]0π=π2414ππ33=π24π212=3π2π212=π26.

Leave a Reply

Your email address will not be published. Required fields are marked *