Menu Close

find-approcimstive-value-of-pi-3-pi-2-x-sinx-dx-




Question Number 88414 by abdomathmax last updated on 10/Apr/20
find approcimstive value of   ∫_(π/3) ^(π/2)  (x/(sinx))dx
findapprocimstivevalueofπ3π2xsinxdx
Commented by mathmax by abdo last updated on 12/Apr/20
we have sinx =x−(x^3 /6) +....⇒x−(x^3 /6)≤sinx≤x  ∀ x∈[(π/3),(π/2)] ⇒  (1/x)≤(1/(sinx))≤(1/(x−(x^3 /6))) ⇒ 1≤(x/(sinx))≤(1/(1−(x^2 /6))) ⇒  (π/2)−(π/3)≤∫_(π/3) ^(π/2)  (x/(sinx))dx ≤ 6∫_(π/3) ^(π/2)  (dx/(6−x^2 ))  we have  ∫_(π/3) ^(π/2)  (dx/(6−x^2 )) =(1/(2(√6)))∫_(π/3) ^(π/2) ((1/( (√6)−x))+(1/( (√6)+x)))dx  =(1/(2(√6)))[ln∣(((√6)+x)/( (√6)−x))∣]_(π/3) ^(π/2)  =(1/(2(√6))){ ln((((√6)+(π/2))/( (√6)−(π/2))))−ln((((√6)+(π/3))/( (√6)−(π/3))))}  =(1/(2(√6))){ln(((2(√6)+π)/(2(√6)−π)))−ln(((3(√6)+π)/(3(√6)−π)))} ⇒  (π/6)≤∫_(π/3) ^(π/2)  (x/(sinx))dx ≤((√6)/2){ ln(((2(√6)+π)/(2(√6)−π)))−ln(((3(√6)+π)/(3(√6)−π)))} we can take  v_0 =(π/2) +((√6)/4){ ln(((2(√6)+π)/(2(√6)−π)))−ln(((3(√6)+π)/(3(√6)−π)))} as a approximste value
wehavesinx=xx36+.xx36sinxxx[π3,π2]1x1sinx1xx361xsinx11x26π2π3π3π2xsinxdx6π3π2dx6x2wehaveπ3π2dx6x2=126π3π2(16x+16+x)dx=126[ln6+x6x]π3π2=126{ln(6+π26π2)ln(6+π36π3)}=126{ln(26+π26π)ln(36+π36π)}π6π3π2xsinxdx62{ln(26+π26π)ln(36+π36π)}wecantakev0=π2+64{ln(26+π26π)ln(36+π36π)}asaapproximstevalue
Commented by mathmax by abdo last updated on 12/Apr/20
v_0 =(π/(12)) +((√6)/4){.....}
v0=π12+64{..}

Leave a Reply

Your email address will not be published. Required fields are marked *