find-approximate-value-of-3-by-using-n-1-n-n-1-for-n-integr-natural- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 57647 by maxmathsup by imad last updated on 09/Apr/19 findapproximatevalueofξ(3)byusingn−1⩽n⩽n+1fornintegrnatural. Commented by maxmathsup by imad last updated on 18/Apr/19 letdetermineS2=∑n=2∞1(n−1)n2+1⇒S2=limn→+∞∑k=1n1k(k+1)2+1letdecomposeG(x)=1x(x+1)2⇒G(x)=ax+bx+1+c(x+1)2a=limx→+∞xG(x)=1,c=limx→−1(x+1)2G(x)=−1⇒G(x)=1x+bx+1−1(x+1)2G(1)=14=1+b2−14⇒1=4+2b−1=3+2b⇒2b=−2⇒b=−1⇒G(x)=1x−1x+1−1(x+1)2⇒∑k=1nG(k)+1=∑k=1n1k−∑k=1n1k+1−∑k=1n1(k+1)2+1=∑k=1n1k−∑k=2n+11k−∑k=2n+11k2+1but∑k=1n1k=Hn,∑k=2n+11k=Hn+1−1and∑k=2n+11k2=ξn+1(2)−1⇒S2=Hn−Hn+1+1−ξn+1(2)+1→2−π26⇒π26−12⩽ξ(3)⩽2−π26⇒π2−36⩽ξ(3)⩽12−π26 Commented by maxmathsup by imad last updated on 18/Apr/19 wehave(n−1)n2⩽n3⩽(n+1)n2⇒1(n+1)n2⩽1n3⩽1(n−1)n2⇒∑n=2∞1(n+1)n2⩽∑n=2∞1n3⩽∑n=2∞1(n−1)n2⇒∑n=2∞1(n+1)n2⩽ξ(3)−1⩽∑n=2∞1(n−1)n2⇒∑n=2∞1(n+1)n2+1⩽ξ(3)⩽∑n=2∞1(n−1)n2+1letdetermineS1=1+∑n=2∞1(n+1)n2⇒S1=12+∑n=1∞1(n+1)n2S1=limn→+∞SnwithSn=12+∑k=1n1(k+1)k2letdecomposeF(x)=1(x+1)x2F(x)=ax+1+bx+cx2a=limx→−1(x+1)F(x)=1,c=limx→0x2F(x)=1⇒F(x)=1x+1+bx+1x2F(1)=12=12+b+1⇒b=−1⇒F(x)=1x+1−1x+1x2⇒∑k=1nF(k)=∑k=1n1k+1−∑k=1n1k+∑k=1n1k2=∑k=2n+11k−∑k=1n1k+∑k=1n1k2=−1−1n+1+∑k=1n1k2→π26−1⇒S1=π26−12 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lebesgue-measure-on-0-1-is-finite-true-or-false-give-reason-Next Next post: Question-188717 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.