Menu Close

find-approximate-value-of-3-by-using-n-1-n-n-1-for-n-integr-natural-




Question Number 57647 by maxmathsup by imad last updated on 09/Apr/19
find  approximate value of ξ(3) by using   n−1 ≤n≤n+1   for n integr  natural .
$${find}\:\:{approximate}\:{value}\:{of}\:\xi\left(\mathrm{3}\right)\:{by}\:{using}\:\:\:{n}−\mathrm{1}\:\leqslant{n}\leqslant{n}+\mathrm{1}\:\:\:{for}\:{n}\:{integr} \\ $$$${natural}\:. \\ $$
Commented by maxmathsup by imad last updated on 18/Apr/19
let determine S_2 =Σ_(n=2) ^∞   (1/((n−1)n^2 )) +1 ⇒ S_2 =lim_(n→+∞) Σ_(k=1) ^n  (1/(k(k+1)^2 )) +1  let decompose G(x) =(1/(x(x+1)^2 )) ⇒G(x) =(a/x) +(b/(x+1)) +(c/((x+1)^2 ))  a =lim_(x→+∞)  xG(x) =1 , c =lim_(x→−1) (x+1)^2 G(x) = −1 ⇒  G(x) =(1/x) +(b/(x+1)) −(1/((x+1)^2 ))  G(1) =(1/4) =1 +(b/2) −(1/4)  ⇒1 =4 +2b −1 =3+2b ⇒2b =−2 ⇒b =−1 ⇒  G(x) =(1/x) −(1/(x+1)) −(1/((x+1)^2 )) ⇒Σ_(k=1) ^n  G(k) +1   =Σ_(k=1) ^n  (1/k) −Σ_(k=1) ^n  (1/(k+1)) −Σ_(k=1) ^n  (1/((k+1)^2 )) +1  =Σ_(k=1) ^n  (1/k) −Σ_(k=2) ^(n+1)  (1/k) −Σ_(k=2) ^(n+1)  (1/k^2 ) +1   but  Σ_(k=1) ^n  (1/k) =H_n   ,  Σ_(k=2) ^(n+1)  (1/k) =H_(n+1) −1    and Σ_(k=2) ^(n+1)  (1/k^2 ) =ξ_(n+1) (2)−1 ⇒  S_2 =H_n −H_(n+1)  +1 −ξ_(n+1) (2) +1  →2−(π^2 /6)  ⇒ (π^2 /6) −(1/2) ≤ξ(3)≤2−(π^2 /6)  ⇒((π^2 −3)/6) ≤ξ(3)≤((12−π^2 )/6)
$${let}\:{determine}\:{S}_{\mathrm{2}} =\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right){n}^{\mathrm{2}} }\:+\mathrm{1}\:\Rightarrow\:{S}_{\mathrm{2}} ={lim}_{{n}\rightarrow+\infty} \sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}\left({k}+\mathrm{1}\right)^{\mathrm{2}} }\:+\mathrm{1} \\ $$$${let}\:{decompose}\:{G}\left({x}\right)\:=\frac{\mathrm{1}}{{x}\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow{G}\left({x}\right)\:=\frac{{a}}{{x}}\:+\frac{{b}}{{x}+\mathrm{1}}\:+\frac{{c}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${a}\:={lim}_{{x}\rightarrow+\infty} \:{xG}\left({x}\right)\:=\mathrm{1}\:,\:{c}\:={lim}_{{x}\rightarrow−\mathrm{1}} \left({x}+\mathrm{1}\right)^{\mathrm{2}} {G}\left({x}\right)\:=\:−\mathrm{1}\:\Rightarrow \\ $$$${G}\left({x}\right)\:=\frac{\mathrm{1}}{{x}}\:+\frac{{b}}{{x}+\mathrm{1}}\:−\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${G}\left(\mathrm{1}\right)\:=\frac{\mathrm{1}}{\mathrm{4}}\:=\mathrm{1}\:+\frac{{b}}{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{4}}\:\:\Rightarrow\mathrm{1}\:=\mathrm{4}\:+\mathrm{2}{b}\:−\mathrm{1}\:=\mathrm{3}+\mathrm{2}{b}\:\Rightarrow\mathrm{2}{b}\:=−\mathrm{2}\:\Rightarrow{b}\:=−\mathrm{1}\:\Rightarrow \\ $$$${G}\left({x}\right)\:=\frac{\mathrm{1}}{{x}}\:−\frac{\mathrm{1}}{{x}+\mathrm{1}}\:−\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow\sum_{{k}=\mathrm{1}} ^{{n}} \:{G}\left({k}\right)\:+\mathrm{1}\: \\ $$$$=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:−\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}+\mathrm{1}}\:−\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} }\:+\mathrm{1} \\ $$$$=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:−\sum_{{k}=\mathrm{2}} ^{{n}+\mathrm{1}} \:\frac{\mathrm{1}}{{k}}\:−\sum_{{k}=\mathrm{2}} ^{{n}+\mathrm{1}} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:+\mathrm{1}\:\:\:{but} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:={H}_{{n}} \:\:,\:\:\sum_{{k}=\mathrm{2}} ^{{n}+\mathrm{1}} \:\frac{\mathrm{1}}{{k}}\:={H}_{{n}+\mathrm{1}} −\mathrm{1}\:\:\:\:{and}\:\sum_{{k}=\mathrm{2}} ^{{n}+\mathrm{1}} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:=\xi_{{n}+\mathrm{1}} \left(\mathrm{2}\right)−\mathrm{1}\:\Rightarrow \\ $$$${S}_{\mathrm{2}} ={H}_{{n}} −{H}_{{n}+\mathrm{1}} \:+\mathrm{1}\:−\xi_{{n}+\mathrm{1}} \left(\mathrm{2}\right)\:+\mathrm{1}\:\:\rightarrow\mathrm{2}−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:\:\Rightarrow\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:−\frac{\mathrm{1}}{\mathrm{2}}\:\leqslant\xi\left(\mathrm{3}\right)\leqslant\mathrm{2}−\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$\Rightarrow\frac{\pi^{\mathrm{2}} −\mathrm{3}}{\mathrm{6}}\:\leqslant\xi\left(\mathrm{3}\right)\leqslant\frac{\mathrm{12}−\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$ \\ $$
Commented by maxmathsup by imad last updated on 18/Apr/19
we have (n−1)n^2  ≤n^3  ≤(n+1)n^2  ⇒(1/((n+1)n^2 )) ≤(1/n^3 ) ≤(1/((n−1)n^2 )) ⇒  Σ_(n=2) ^∞   (1/((n+1)n^2 )) ≤ Σ_(n=2) ^∞  (1/n^3 ) ≤ Σ_(n=2) ^∞   (1/((n−1)n^2 )) ⇒Σ_(n=2) ^∞  (1/((n+1)n^2 )) ≤ξ(3)−1  ≤Σ_(n=2) ^∞   (1/((n−1)n^2 )) ⇒Σ_(n=2) ^∞    (1/((n+1)n^2 )) +1 ≤ξ(3)≤Σ_(n=2) ^∞   (1/((n−1)n^2 )) +1  let determine S_1 =1+Σ_(n=2) ^∞   (1/((n+1)n^2 )) ⇒ S_1 =(1/2) +Σ_(n=1) ^∞   (1/((n+1)n^2 ))  S_1 =lim_(n→+∞)  S_n   with S_n =(1/2) +Σ_(k=1) ^n   (1/((k+1)k^2 ))  let decompose F(x)=(1/((x+1)x^2 ))  F(x) =(a/(x+1)) +(b/x) +(c/x^2 )  a =lim_(x→−1) (x+1)F(x) =1   ,c =lim_(x→0)  x^2  F(x) =1 ⇒F(x)=(1/(x+1)) +(b/x) +(1/x^2 )  F(1) =(1/2) =(1/2) +b +1 ⇒b =−1 ⇒F(x) =(1/(x+1)) −(1/x) +(1/x^2 ) ⇒  Σ_(k=1) ^n  F(k) =Σ_(k=1) ^n  (1/(k+1)) −Σ_(k=1) ^n  (1/k) +Σ_(k=1) ^n  (1/k^2 )  =Σ_(k=2) ^(n+1)  (1/k) −Σ_(k=1) ^n  (1/k) +Σ_(k=1) ^n  (1/k^2 ) =−1−(1/(n+1)) +Σ_(k=1) ^n  (1/k^2 ) →(π^2 /6) −1 ⇒  S_1 =(π^2 /6) −(1/2)
$${we}\:{have}\:\left({n}−\mathrm{1}\right){n}^{\mathrm{2}} \:\leqslant{n}^{\mathrm{3}} \:\leqslant\left({n}+\mathrm{1}\right){n}^{\mathrm{2}} \:\Rightarrow\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right){n}^{\mathrm{2}} }\:\leqslant\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\:\leqslant\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right){n}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right){n}^{\mathrm{2}} }\:\leqslant\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\:\leqslant\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right){n}^{\mathrm{2}} }\:\Rightarrow\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right){n}^{\mathrm{2}} }\:\leqslant\xi\left(\mathrm{3}\right)−\mathrm{1} \\ $$$$\leqslant\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right){n}^{\mathrm{2}} }\:\Rightarrow\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right){n}^{\mathrm{2}} }\:+\mathrm{1}\:\leqslant\xi\left(\mathrm{3}\right)\leqslant\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right){n}^{\mathrm{2}} }\:+\mathrm{1} \\ $$$${let}\:{determine}\:{S}_{\mathrm{1}} =\mathrm{1}+\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right){n}^{\mathrm{2}} }\:\Rightarrow\:{S}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right){n}^{\mathrm{2}} } \\ $$$${S}_{\mathrm{1}} ={lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \:\:{with}\:{S}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\:+\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right){k}^{\mathrm{2}} }\:\:{let}\:{decompose}\:{F}\left({x}\right)=\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right){x}^{\mathrm{2}} } \\ $$$${F}\left({x}\right)\:=\frac{{a}}{{x}+\mathrm{1}}\:+\frac{{b}}{{x}}\:+\frac{{c}}{{x}^{\mathrm{2}} } \\ $$$${a}\:={lim}_{{x}\rightarrow−\mathrm{1}} \left({x}+\mathrm{1}\right){F}\left({x}\right)\:=\mathrm{1}\:\:\:,{c}\:={lim}_{{x}\rightarrow\mathrm{0}} \:{x}^{\mathrm{2}} \:{F}\left({x}\right)\:=\mathrm{1}\:\Rightarrow{F}\left({x}\right)=\frac{\mathrm{1}}{{x}+\mathrm{1}}\:+\frac{{b}}{{x}}\:+\frac{\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$$${F}\left(\mathrm{1}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\:=\frac{\mathrm{1}}{\mathrm{2}}\:+{b}\:+\mathrm{1}\:\Rightarrow{b}\:=−\mathrm{1}\:\Rightarrow{F}\left({x}\right)\:=\frac{\mathrm{1}}{{x}+\mathrm{1}}\:−\frac{\mathrm{1}}{{x}}\:+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:{F}\left({k}\right)\:=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}+\mathrm{1}}\:−\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:+\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$$$=\sum_{{k}=\mathrm{2}} ^{{n}+\mathrm{1}} \:\frac{\mathrm{1}}{{k}}\:−\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:+\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:=−\mathrm{1}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\:+\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:\rightarrow\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:−\mathrm{1}\:\Rightarrow \\ $$$${S}_{\mathrm{1}} =\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:−\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *