Menu Close

find-approximate-value-of-3-by-using-n-1-n-n-1-for-n-integr-natural-




Question Number 57647 by maxmathsup by imad last updated on 09/Apr/19
find  approximate value of ξ(3) by using   n−1 ≤n≤n+1   for n integr  natural .
findapproximatevalueofξ(3)byusingn1nn+1fornintegrnatural.
Commented by maxmathsup by imad last updated on 18/Apr/19
let determine S_2 =Σ_(n=2) ^∞   (1/((n−1)n^2 )) +1 ⇒ S_2 =lim_(n→+∞) Σ_(k=1) ^n  (1/(k(k+1)^2 )) +1  let decompose G(x) =(1/(x(x+1)^2 )) ⇒G(x) =(a/x) +(b/(x+1)) +(c/((x+1)^2 ))  a =lim_(x→+∞)  xG(x) =1 , c =lim_(x→−1) (x+1)^2 G(x) = −1 ⇒  G(x) =(1/x) +(b/(x+1)) −(1/((x+1)^2 ))  G(1) =(1/4) =1 +(b/2) −(1/4)  ⇒1 =4 +2b −1 =3+2b ⇒2b =−2 ⇒b =−1 ⇒  G(x) =(1/x) −(1/(x+1)) −(1/((x+1)^2 )) ⇒Σ_(k=1) ^n  G(k) +1   =Σ_(k=1) ^n  (1/k) −Σ_(k=1) ^n  (1/(k+1)) −Σ_(k=1) ^n  (1/((k+1)^2 )) +1  =Σ_(k=1) ^n  (1/k) −Σ_(k=2) ^(n+1)  (1/k) −Σ_(k=2) ^(n+1)  (1/k^2 ) +1   but  Σ_(k=1) ^n  (1/k) =H_n   ,  Σ_(k=2) ^(n+1)  (1/k) =H_(n+1) −1    and Σ_(k=2) ^(n+1)  (1/k^2 ) =ξ_(n+1) (2)−1 ⇒  S_2 =H_n −H_(n+1)  +1 −ξ_(n+1) (2) +1  →2−(π^2 /6)  ⇒ (π^2 /6) −(1/2) ≤ξ(3)≤2−(π^2 /6)  ⇒((π^2 −3)/6) ≤ξ(3)≤((12−π^2 )/6)
letdetermineS2=n=21(n1)n2+1S2=limn+k=1n1k(k+1)2+1letdecomposeG(x)=1x(x+1)2G(x)=ax+bx+1+c(x+1)2a=limx+xG(x)=1,c=limx1(x+1)2G(x)=1G(x)=1x+bx+11(x+1)2G(1)=14=1+b2141=4+2b1=3+2b2b=2b=1G(x)=1x1x+11(x+1)2k=1nG(k)+1=k=1n1kk=1n1k+1k=1n1(k+1)2+1=k=1n1kk=2n+11kk=2n+11k2+1butk=1n1k=Hn,k=2n+11k=Hn+11andk=2n+11k2=ξn+1(2)1S2=HnHn+1+1ξn+1(2)+12π26π2612ξ(3)2π26π236ξ(3)12π26
Commented by maxmathsup by imad last updated on 18/Apr/19
we have (n−1)n^2  ≤n^3  ≤(n+1)n^2  ⇒(1/((n+1)n^2 )) ≤(1/n^3 ) ≤(1/((n−1)n^2 )) ⇒  Σ_(n=2) ^∞   (1/((n+1)n^2 )) ≤ Σ_(n=2) ^∞  (1/n^3 ) ≤ Σ_(n=2) ^∞   (1/((n−1)n^2 )) ⇒Σ_(n=2) ^∞  (1/((n+1)n^2 )) ≤ξ(3)−1  ≤Σ_(n=2) ^∞   (1/((n−1)n^2 )) ⇒Σ_(n=2) ^∞    (1/((n+1)n^2 )) +1 ≤ξ(3)≤Σ_(n=2) ^∞   (1/((n−1)n^2 )) +1  let determine S_1 =1+Σ_(n=2) ^∞   (1/((n+1)n^2 )) ⇒ S_1 =(1/2) +Σ_(n=1) ^∞   (1/((n+1)n^2 ))  S_1 =lim_(n→+∞)  S_n   with S_n =(1/2) +Σ_(k=1) ^n   (1/((k+1)k^2 ))  let decompose F(x)=(1/((x+1)x^2 ))  F(x) =(a/(x+1)) +(b/x) +(c/x^2 )  a =lim_(x→−1) (x+1)F(x) =1   ,c =lim_(x→0)  x^2  F(x) =1 ⇒F(x)=(1/(x+1)) +(b/x) +(1/x^2 )  F(1) =(1/2) =(1/2) +b +1 ⇒b =−1 ⇒F(x) =(1/(x+1)) −(1/x) +(1/x^2 ) ⇒  Σ_(k=1) ^n  F(k) =Σ_(k=1) ^n  (1/(k+1)) −Σ_(k=1) ^n  (1/k) +Σ_(k=1) ^n  (1/k^2 )  =Σ_(k=2) ^(n+1)  (1/k) −Σ_(k=1) ^n  (1/k) +Σ_(k=1) ^n  (1/k^2 ) =−1−(1/(n+1)) +Σ_(k=1) ^n  (1/k^2 ) →(π^2 /6) −1 ⇒  S_1 =(π^2 /6) −(1/2)
wehave(n1)n2n3(n+1)n21(n+1)n21n31(n1)n2n=21(n+1)n2n=21n3n=21(n1)n2n=21(n+1)n2ξ(3)1n=21(n1)n2n=21(n+1)n2+1ξ(3)n=21(n1)n2+1letdetermineS1=1+n=21(n+1)n2S1=12+n=11(n+1)n2S1=limn+SnwithSn=12+k=1n1(k+1)k2letdecomposeF(x)=1(x+1)x2F(x)=ax+1+bx+cx2a=limx1(x+1)F(x)=1,c=limx0x2F(x)=1F(x)=1x+1+bx+1x2F(1)=12=12+b+1b=1F(x)=1x+11x+1x2k=1nF(k)=k=1n1k+1k=1n1k+k=1n1k2=k=2n+11kk=1n1k+k=1n1k2=11n+1+k=1n1k2π261S1=π2612

Leave a Reply

Your email address will not be published. Required fields are marked *