Question Number 28887 by abdo imad last updated on 31/Jan/18
$${find}\:\int\:\:{arcsin}\left(\sqrt{\frac{{x}}{{x}+\mathrm{2}}}\right){dx}. \\ $$
Commented by abdo imad last updated on 02/Feb/18
$${let}\:{use}\:{the}\:{ch}.{arcsin}\left(\sqrt{\:\frac{{x}}{{x}+\mathrm{1}}}\:\right)={t}\:\Leftrightarrow\sqrt{\frac{{x}}{{x}+\mathrm{1}}}\:={sint} \\ $$$$\Leftrightarrow\frac{{x}}{{x}+\mathrm{1}}={sin}^{\mathrm{2}} {t}\:\Leftrightarrow{x}={xsin}^{\mathrm{2}} {t}\:+{sin}^{\mathrm{2}} {t}\Leftrightarrow\left(\mathrm{1}−{sin}^{\mathrm{2}} {t}\right){x}\:={sin}^{\mathrm{2}} {t}\Leftrightarrow \\ $$$${x}=\:\frac{{sin}^{\mathrm{2}} {t}}{\mathrm{1}−{sin}^{\mathrm{2}} {t}}=−\:\frac{\mathrm{1}−{sin}^{\mathrm{2}} {t}\:−\mathrm{1}}{\mathrm{1}−{sin}^{\mathrm{2}} {t}}=−\mathrm{1}\:−\frac{\mathrm{1}}{{sin}^{\mathrm{2}} {t}−\mathrm{1}}\Rightarrow \\ $$$${dx}=\frac{\mathrm{2}{sint}\:{cost}}{\left({sin}^{\mathrm{2}} {t}\:−\mathrm{1}\right)^{\mathrm{2}} }{dt}\:{so} \\ $$$${I}=\:\int\:{t}\:\frac{\mathrm{2}{sint}\:{cost}}{\left(\mathrm{1}−{sin}^{\mathrm{2}} {t}\right)^{\mathrm{2}} }{dt}\:=\:\int\:\:\frac{\mathrm{2}{t}\:{sint}\:{cost}}{{cos}^{\mathrm{4}} {t}}{dt} \\ $$$$=\:\int\:\:\:\frac{\mathrm{2}{t}\:{sint}}{{cos}^{\mathrm{3}} {t}}{dt}\:\:{by}\:{parts}\:\:{u}=\mathrm{2}{t}\:{and}\:{v}^{'} =\:\frac{{sint}}{{cos}^{\mathrm{3}} {t}}\:\:\:\:\:\:\:\:\: \\ $$$${I}=\:\:−{t}\:{cos}^{−\mathrm{2}} {t}\:−\int\:\mathrm{2}\left(\frac{−\mathrm{1}}{\mathrm{2}}{cos}^{−\mathrm{2}} {t}\right){dt} \\ $$$$=\:−\frac{{t}}{{cos}^{\mathrm{2}} {t}}\:+\:\int\:\:\frac{{dt}}{{cos}^{\mathrm{2}} {t}}=\:{tant}\:−\frac{{t}}{{cos}^{\mathrm{2}} {t}}\:+{k}\:{but} \\ $$$${cos}^{\mathrm{2}} {t}\:=\mathrm{1}−{sin}^{\mathrm{2}} {t}=\mathrm{1}−\frac{{x}}{{x}+\mathrm{1}}=\:\frac{\mathrm{1}}{{x}+\mathrm{1}}\:\:{and}\: \\ $$$${tant}=\:\frac{{sint}}{{cost}}=\frac{\sqrt{\frac{{x}}{{x}+\mathrm{1}}}}{\:\sqrt{\frac{\mathrm{1}}{{x}+\mathrm{1}}}}=\:{x}\:\:\:{so} \\ $$$${I}=\:\sqrt{{x}}−\frac{\mathrm{1}}{{x}+\mathrm{1}}{arcsin}\left(\sqrt{\frac{{x}}{{x}+\mathrm{1}}}\:\right)\:+{k}\:. \\ $$
Commented by abdo imad last updated on 02/Feb/18
$${the}\:{Q}\:{is}\:{find}\:{I}=\:\int\:{arcsin}\left(\sqrt{\frac{{x}}{{x}+\mathrm{1}}}\:\right){dx}\:. \\ $$