Menu Close

find-arctan-x-arctany-at-form-of-arctan-




Question Number 98187 by abdomathmax last updated on 12/Jun/20
find arctan(x)+arctany  at form of arctan
findarctan(x)+arctanyatformofarctan
Answered by Rio Michael last updated on 12/Jun/20
let arctan x = u ⇒ x = tan u  and let tan y = v ⇒ y = tan v  suppose arctan x + arctan y = θ  then u + v = θ  ⇒ tan θ = ((tan u + tan v)/(1 − tan u tan v))  ⇒  arctan x + arctan y = arctan (((x + y)/(1−xy)))
letarctanx=ux=tanuandlettany=vy=tanvsupposearctanx+arctany=θthenu+v=θtanθ=tanu+tanv1tanutanvarctanx+arctany=arctan(x+y1xy)
Answered by 1549442205 last updated on 12/Jun/20
Putting α=arctan(x),β=arctan(y) we get  tanα=x ,tanβ=y⇒tan(α+β)=((tanα+tanβ)/(1−tanαtanβ))  =((x+y)/(1−xy))⇒𝛂+𝛃=arctan(((x+y)/(1−xy)))
Puttingα=arctan(x),β=arctan(y)wegettanα=x,tanβ=ytan(α+β)=tanα+tanβ1tanαtanβ=x+y1xyα+β=arctan(x+y1xy)
Answered by mathmax by abdo last updated on 12/Jun/20
we have tan(arctanx+arctany) =((x+y)/(1−xy)) ⇒  arctanx +arctany =arctan(((x+y)/(1−xy)))  if xy ≠1  if xy=1 ⇒y =(1/x) ⇒arctanx +arctany =+^− (π/2)
wehavetan(arctanx+arctany)=x+y1xyarctanx+arctany=arctan(x+y1xy)ifxy1ifxy=1y=1xarctanx+arctany=+π2

Leave a Reply

Your email address will not be published. Required fields are marked *