Question Number 86955 by abdomathmax last updated on 01/Apr/20
$${find}\:\int\:\:\frac{{arctan}\left({x}\right)}{{x}}{dx} \\ $$
Commented by Ar Brandon last updated on 01/Apr/20
$${Let}\:{f}\left({a}\right)=\int\frac{{arctan}\left({ax}\right)}{{x}}{dx} \\ $$$$\Rightarrow{f}\:'\:\left({a}\right)=\int\frac{{x}}{{x}}\centerdot\frac{\mathrm{1}}{\mathrm{1}+\left({ax}\right)^{\mathrm{2}} }{dx}=\int\frac{\mathrm{1}}{\mathrm{1}+\left({ax}\right)^{\mathrm{2}} }{dx} \\ $$$$\Rightarrow{f}\:'\:\:\left({a}\right)\:=\:\frac{\mathrm{1}}{{a}}\centerdot{arctan}\left({ax}\right)+{C} \\ $$$$….. \\ $$
Answered by redmiiuser last updated on 01/Apr/20
$${arc}\mathrm{tan}\:{x}={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{{x}^{\mathrm{5}} }{\mathrm{5}}−\frac{{x}^{\mathrm{7}} }{\mathrm{7}}+… \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} .{x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$$\int\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} .{x}^{\mathrm{2}{n}} .{dx}}{\mathrm{2}{n}+\mathrm{1}} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} .{x}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Commented by redmiiuser last updated on 01/Apr/20
$${Mr}.{abdomathmax}\:{pls} \\ $$$${check}\:{my}\:{answer}\:{and} \\ $$$${comment}\:{the}\:{appropriate}. \\ $$
Commented by mathmax by abdo last updated on 01/Apr/20
$${your}\:{answer}\:{is}\:{correct}\:\:{because}\:{the}\:{radius}\:{of}\:{arctan}\left({x}\right){is}\:+\infty \\ $$$$\left({integr}\:{serie}\right) \\ $$
Answered by mind is power last updated on 02/Apr/20
$$={ln}\left({x}\right){arctan}\left({x}\right)−\int\frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$={ln}\left({x}\right){arctan}\left({x}\right)−\int\frac{{ln}\left({x}\right){dx}}{\left({x}+{i}\right)\left({x}−{i}\right)} \\ $$$$={ln}\left({x}\right){arctan}\left({x}\right)−\frac{\mathrm{1}}{\mathrm{2}{i}}\int\left\{\frac{{ln}\left({x}\right)}{{x}−{i}}−\frac{{ln}\left({x}\right)}{{x}+{i}}\right\}{dx} \\ $$$$={arctan}\left({x}\right){ln}\left({x}\right)−\frac{\mathrm{1}}{\mathrm{2}{i}}\int\frac{{ln}\left({x}\right){dx}}{{x}−{i}}+\frac{\mathrm{1}}{\mathrm{2}{i}}\int\frac{{ln}\left({x}\right)}{{x}+{i}}{dx} \\ $$$$\int\frac{{ln}\left({x}\right)}{{x}+{a}}{dx}=\int\frac{{ln}\left({y}−{a}\right)}{{y}}{dy}=\int\frac{{ln}\left(−{a}\right)+{ln}\left(\mathrm{1}−\frac{{y}}{{a}}\right)}{{y}}{dy} \\ $$$$={ln}\left(−{a}\right){ln}\left({x}+{a}\right)−{Li}_{\mathrm{2}} \left(\frac{{x}}{{a}}+\mathrm{1}\right) \\ $$$$={arctan}\left({x}\right){ln}\left({x}\right)−\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left({i}\right){ln}\left({x}−{i}\right)+\frac{\mathrm{1}}{\mathrm{2}{i}}{Li}_{\mathrm{2}} \left({ix}+\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(−{i}\right){ln}\left({x}+{i}\right) \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}{i}}{Li}_{\mathrm{2}} \left(−{ix}+\mathrm{1}\right)+{c} \\ $$$$ \\ $$$$ \\ $$