Question Number 41461 by rahul 19 last updated on 07/Aug/18

Commented by rahul 19 last updated on 07/Aug/18

Commented by rahul 19 last updated on 07/Aug/18

Commented by MJS last updated on 07/Aug/18

Answered by MJS last updated on 07/Aug/18
![idea: intersect y=d with f(x) we don′t need x_1 <0 solve x_3 −x_2 =d for d 3x−x^3 =d x^3 −3x+d=0 [f′(x)=3−3x^2 ⇒ max(f(x))= ((1),(2) ) ⇒ ⇒ 0<d<2 ⇔ x_1 , x_2 , x_3 ∈R ⇒ ⇒ we need the trigonometric method] x_1 =−2sin((1/3)(π+arcsin (d/2))) x_2 =2sin((1/3)arcsin (d/2)) x_3 =2cos((1/3)((π/2)+arcsin (d/2))) x_3 −x_2 =d 2(√3)cos((1/3)(π+arcsin (d/2)))=d (1/3)(π+arcsin (d/2))=arccos (d(√3)/6) π+arcsin (d/2)=3arccos (d(√3)/6) tan(π+arcsin (d/2))=tan(3arccos (d(√3)/6)) (d/( (√(4−d^2 ))))=(((d^2 −3)(√(12−d^2 )))/(d(d^2 −9))) this leads to d^6 −18d^4 +108d^2 −108=0 d=(√u) u^3 −18u^2 +108u−108=0 u=v+6 v^3 +108=0 v=−3(4)^(1/3) u=6−3(4)^(1/3) d=(√(6−3(4)^(1/3) ))≈1.11256 area of square=d^2 =6−3(4)^(1/3) ≈1.23780](https://www.tinkutara.com/question/Q41469.png)