Menu Close

Find-area-of-square-inserted-in-curve-f-x-3x-x-3-




Question Number 41461 by rahul 19 last updated on 07/Aug/18
Find area of square inserted in curve  f(x)= 3x−x^3 .
Findareaofsquareinsertedincurvef(x)=3xx3.
Commented by rahul 19 last updated on 07/Aug/18
Commented by rahul 19 last updated on 07/Aug/18
Ans: (216)^(1/3) +(−108)^(1/3) .
Ans:(216)13+(108)13.
Commented by MJS last updated on 07/Aug/18
216^(1/3) =6  (−108)^(1/3) =−108^(1/3) =−(2^2 3^3 )^(1/3) =−3(4)^(1/3)   ⇒ answer=6−3(4)^(1/3)
21613=6(108)13=10813=(2233)13=343answer=6343
Answered by MJS last updated on 07/Aug/18
idea: intersect y=d with f(x)  we don′t need x_1 <0  solve x_3 −x_2 =d for d    3x−x^3 =d  x^3 −3x+d=0       [f′(x)=3−3x^2  ⇒ max(f(x))= ((1),(2) ) ⇒        ⇒ 0<d<2 ⇔ x_1 , x_2 , x_3  ∈R ⇒        ⇒ we need the trigonometric method]  x_1 =−2sin((1/3)(π+arcsin (d/2)))  x_2 =2sin((1/3)arcsin (d/2))  x_3 =2cos((1/3)((π/2)+arcsin (d/2)))  x_3 −x_2 =d  2(√3)cos((1/3)(π+arcsin (d/2)))=d  (1/3)(π+arcsin (d/2))=arccos (d(√3)/6)  π+arcsin (d/2)=3arccos (d(√3)/6)  tan(π+arcsin (d/2))=tan(3arccos (d(√3)/6))  (d/( (√(4−d^2 ))))=(((d^2 −3)(√(12−d^2 )))/(d(d^2 −9)))  this leads to  d^6 −18d^4 +108d^2 −108=0  d=(√u)  u^3 −18u^2 +108u−108=0  u=v+6  v^3 +108=0  v=−3(4)^(1/3)   u=6−3(4)^(1/3)   d=(√(6−3(4)^(1/3) ))≈1.11256  area of square=d^2 =6−3(4)^(1/3) ≈1.23780
idea:intersecty=dwithf(x)wedontneedx1<0solvex3x2=dford3xx3=dx33x+d=0[f(x)=33x2max(f(x))=(12)0<d<2x1,x2,x3Rweneedthetrigonometricmethod]x1=2sin(13(π+arcsind2))x2=2sin(13arcsind2)x3=2cos(13(π2+arcsind2))x3x2=d23cos(13(π+arcsind2))=d13(π+arcsind2)=arccosd36π+arcsind2=3arccosd36tan(π+arcsind2)=tan(3arccosd36)d4d2=(d23)12d2d(d29)thisleadstod618d4+108d2108=0d=uu318u2+108u108=0u=v+6v3+108=0v=343u=6343d=63431.11256areaofsquare=d2=63431.23780

Leave a Reply

Your email address will not be published. Required fields are marked *