Menu Close

find-by-two-ways-the-value-of-0-1-x-y-dxdxy-then-calculate-0-1-t-1-lnt-dt-




Question Number 27692 by abdo imad last updated on 12/Jan/18
find by two ways the value of ∫∫_([0,1])   x^y   dxdxy then  calculate ∫_0 ^1    ((t−1)/(lnt))dt  .
findbytwowaysthevalueof[0,1]xydxdxythencalculate01t1lntdt.
Commented by abdo imad last updated on 13/Jan/18
let put I= ∫∫_([0,1]^2 )  x^y  dxdy  I= ∫_0 ^1 (∫_0 ^1 ( e^(ylnx) dy)dx  but  ∫_0 ^1 e^(ylnx) dy =   [(1/(lnx)) x^y   ]_(y=0) ^(y=1)   = ((x−1)/(lnx)) ⇒ I= ∫_0 ^1   ((x−1)/(lnx))dx  let change the integral due to fubini theorem  I=∫_0 ^1 ( ∫_0 ^1  x^y dx)dy  but   ∫_0 ^1  x^y dx =[ (x^(y+1) /(y+1))]_(x=0) ^(x=1)   = (1/(y+1))  ⇒I= ∫_0 ^1  (dy/(y+1)) =[ln/y+1/]_0 ^1   =ln(2).finally  ∫_0 ^1   ((x−1)/(lnx))dx= ln(2).
letputI=[0,1]2xydxdyI=01(01(eylnxdy)dxbut01eylnxdy=[1lnxxy]y=0y=1=x1lnxI=01x1lnxdxletchangetheintegralduetofubinitheoremMissing \left or extra \right=1y+1I=01dyy+1=[ln/y+1/]01=ln(2).finally01x1lnxdx=ln(2).

Leave a Reply

Your email address will not be published. Required fields are marked *