Menu Close

Find-C-0-1-1-e-u-du-Prove-that-1-1-1-n-1-x-n-dx-C-n-




Question Number 125737 by snipers237 last updated on 13/Dec/20
 Find C=∫_0 ^1 (√(1+e^(−u) )) du  Prove that ∫_1 ^(1+(1/n)) (√(1+x^n )) dx ∼_∞  (C/n)
FindC=011+euduProvethat11+1n1+xndxCn
Answered by MJS_new last updated on 13/Dec/20
∫(√(1+e^(−u) ))du=       [v=(√(1+e^(−u) )) → du=2(v/(1−v^2 ))dv]  =∫(v^2 /(1−v^2 ))dv=∫(−2+(1/(v+1))−(1/(v−1)))dv=  =−2v+ln ∣((v+1)/(v−1))∣ =...  =−2(√(1+e^(−u) ))+2ln ((√e^u )+(√(1+e^u ))) +C  now insert borders
1+eudu=[v=1+eudu=2v1v2dv]=v21v2dv=(2+1v+11v1)dv==2v+lnv+1v1==21+eu+2ln(eu+1+eu)+Cnowinsertborders
Answered by mathmax by abdo last updated on 13/Dec/20
C =∫_0 ^1 (√(1+e^(−u) )) du   changement (√(1+e^(−u) ))=t give 1+e^(−u)  =t^2  ⇒  e^(−u)  =t^2 −1 ⇒−u =ln(t^2 −1) ⇒u=−ln(t^2 −1) ⇒(du/dt)=−((2t)/(t^2 −1)) ⇒  C =−2∫_(√2) ^(√(1+e^(−1) ))     (t^2 /(t^2 −1))dt  =2 ∫_(√(1+e^(−1) )) ^(√2) ((t^2 −1+1)/(t^2 −1))dt  =2((√2)−(√(1+e^(−1) ))) +∫_(√(1+e^(−1) )) ^(√2)  ((1/(t−1))−(1/(t+1)))dt  =2(√2)−2(√(1+e^(−1) )) +[ln∣((t−1)/(t+1))∣]_(√(1+e^(−1) )) ^(√2)   =2(√2)−2(√(1+e^(−1) )) +ln((((√2)−1)/( (√2)+1)))−ln((((√(1+e^(−1) ))−1)/( (√(1+e^(−1) ))+1)))
C=011+euduchangement1+eu=tgive1+eu=t2eu=t21u=ln(t21)u=ln(t21)dudt=2tt21C=221+e1t2t21dt=21+e12t21+1t21dt=2(21+e1)+1+e12(1t11t+1)dt=2221+e1+[lnt1t+1]1+e12=2221+e1+ln(212+1)ln(1+e111+e1+1)
Answered by mathmax by abdo last updated on 13/Dec/20
A_n =∫_1 ^(1+(1/n)) (√(1+x^n ))dx  changement x=t+1 give  A_n =∫_0 ^(1/n) (√(1+(t+1)^n ))dt    but n→+∞ ⇒t→o  and  1+(t+1)^n  ∼1+nt ⇒A_n ∼ ∫_0 ^(1/n) (√(1+nt))dt  changement  (√(1+nt))=z give 1+nt =z^2  ⇒nt=z^2 −1 ⇒t =(1/n)(z^2 −1) ⇒  ∫_0 ^(1/n) (√(1+nt))dt =∫_1 ^(√2) z (1/n)(2z)dz =(2/n)∫_1 ^(√2) z^2  dz =(2/(3n))[z^3 ]_1 ^(√2)   =(2/(3n))(2(√2)−1) ⇒ A_n ∼((4(√2)−1)/(3n))  we can take C =((4(√2)−1)/3)
An=11+1n1+xndxchangementx=t+1giveAn=01n1+(t+1)ndtbutn+toand1+(t+1)n1+ntAn01n1+ntdtchangement1+nt=zgive1+nt=z2nt=z21t=1n(z21)01n1+ntdt=12z1n(2z)dz=2n12z2dz=23n[z3]12=23n(221)An4213nwecantakeC=4213
Commented by mathmax by abdo last updated on 14/Dec/20
sorry 1+(t+1)^n  ∼2+nt ⇒A_n ∼∫_0 ^(1/n) (√(2+nt))dt we do the changement  (√(2+nt))= u ⇒2+nt=u^2  ⇒nt=u^2 −2 ⇒t=(1/n)(u^2 −2) ⇒  ∫_0 ^(1/n) (√(2+nt))dt =∫_(√2) ^(√3)  u×(2/n) u du =(2/n)∫_(√2) ^(√3) u^2  du  =(2/(3n))[u^3 ]_(√2) ^(√3) =(2/(3n)){3(√3)−2(√2)} ⇒A_n ∼((6(√3)−4(√2))/(3n)) ⇒C=((6(√3)−4(√2))/3)
sorry1+(t+1)n2+ntAn01n2+ntdtwedothechangement2+nt=u2+nt=u2nt=u22t=1n(u22)01n2+ntdt=23u×2nudu=2n23u2du=23n[u3]23=23n{3322}An63423nC=63423

Leave a Reply

Your email address will not be published. Required fields are marked *