Question Number 157628 by mr W last updated on 25/Oct/21
$${find} \\ $$$$\left({C}_{\mathrm{0}} ^{\mathrm{100}} \right)^{\mathrm{2}} +\left({C}_{\mathrm{2}} ^{\mathrm{100}} \right)^{\mathrm{2}} +\left({C}_{\mathrm{4}} ^{\mathrm{100}} \right)^{\mathrm{2}} +\left({C}_{\mathrm{6}} ^{\mathrm{100}} \right)^{\mathrm{2}} +…+\left({C}_{\mathrm{100}} ^{\mathrm{100}} \right)^{\mathrm{2}} =? \\ $$
Answered by mindispower last updated on 25/Oct/21
$$\underset{{k}=\mathrm{0}} {\overset{\mathrm{100}} {\sum}}\left({C}_{\mathrm{2}{k}} ^{\mathrm{100}} \right)^{\mathrm{2}} \\ $$$$\left(\mathrm{1}+{ix}\right)^{\mathrm{100}} \left(\mathrm{1}−{ix}\right)^{\mathrm{100}} =\underset{{k}=\mathrm{0}} {\overset{\mathrm{100}} {\sum}}{C}_{\mathrm{100}} ^{{k}} \left({ix}\right)^{{k}} \underset{{n}=\mathrm{0}} {\overset{\mathrm{100}} {\sum}}{C}_{{n}} ^{\mathrm{100}} \left(−{ix}\right)^{{n}} \\ $$$$=\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{100}} =\underset{{k}=\mathrm{0}} {\overset{\mathrm{100}} {\sum}}{C}_{\mathrm{100}} ^{{k}} \left({ix}\right)^{{k}} .\underset{{n}=\mathrm{0}} {\overset{\mathrm{100}} {\sum}}{C}_{{n}} ^{\mathrm{100}} \left(−{ix}\right)^{{n}} \\ $$$${n}+{k}=\mathrm{100} \\ $$$$\Rightarrow{C}_{\mathrm{100}} ^{\mathrm{50}} {x}^{\mathrm{100}} =\underset{{k}=\mathrm{0}} {\overset{\mathrm{100}} {\sum}}{C}_{\mathrm{100}} ^{{k}} \left({ix}\right)^{{k}} .{C}_{\mathrm{100}−{k}} ^{\mathrm{100}} \left(−{i}\right)^{\mathrm{100}−{k}} {x}^{\mathrm{100}−\boldsymbol{{k}}} \\ $$$$\Rightarrow\underset{{k}=\mathrm{0}} {\overset{\mathrm{100}} {\sum}}{C}_{{k}} ^{\mathrm{100}} .{C}_{\mathrm{100}−\boldsymbol{{k}}} ^{\mathrm{100}} \left(−\mathrm{1}\right)^{\boldsymbol{{k}}} \boldsymbol{{x}}^{\mathrm{100}} \\ $$$$\Rightarrow\underset{{k}=\mathrm{0}} {\overset{\mathrm{100}} {\sum}}\left(−\mathrm{1}\right)^{{k}} \left({C}_{{k}} ^{\mathrm{100}} \right)^{\mathrm{2}} ={C}_{\mathrm{50}} ^{\mathrm{100}} \\ $$$$\left(\mathrm{1}+{x}\right)^{\mathrm{100}} \left(\mathrm{1}+{x}\right)^{\mathrm{100}} =\underset{{k}=\mathrm{0}} {\overset{\mathrm{100}} {\sum}}{C}_{{k}} ^{\mathrm{100}} {x}^{{k}} \underset{{n}=\mathrm{0}} {\overset{\mathrm{100}} {\sum}}{C}_{{n}} ^{\mathrm{100}} {x}^{{n}} \\ $$$${C}_{\mathrm{100}} ^{\mathrm{200}} {x}^{\mathrm{100}} =\underset{{k}=\mathrm{0}} {\overset{\mathrm{100}} {\sum}}\left({C}_{{k}} ^{\mathrm{100}} \right)^{\mathrm{2}} \\ $$$$\Sigma\left({C}_{\mathrm{2}{k}} ^{\mathrm{100}} \right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=\mathrm{0}} {\overset{\mathrm{100}} {\sum}}\left(\left({C}_{{k}} ^{\mathrm{100}} \right)^{\mathrm{2}} +\left(−\mathrm{1}\right)^{{k}} \left({C}_{{k}} ^{\mathrm{100}} \right)^{\mathrm{2}} \right) \\ $$$$\underset{{k}=\mathrm{0}} {\overset{\mathrm{50}} {\sum}}\left({C}_{\mathrm{2}{k}} ^{\mathrm{100}} \right)=\frac{\mathrm{1}}{\mathrm{2}}\left({C}_{\mathrm{100}} ^{\mathrm{200}} +{C}_{\mathrm{50}} ^{\mathrm{100}} \right) \\ $$$$ \\ $$$$ \\ $$
Commented by mr W last updated on 26/Oct/21
$${great}!\:{thanks}\:{sir}! \\ $$
Commented by mindispower last updated on 26/Oct/21
$${withe}\:{pleasur}\:{sir} \\ $$$${Have}\:{a}\:{nice}\:{day} \\ $$