Menu Close

find-C-0-100-2-C-2-100-2-C-4-100-2-C-6-100-2-C-100-100-2-




Question Number 157628 by mr W last updated on 25/Oct/21
find  (C_0 ^(100) )^2 +(C_2 ^(100) )^2 +(C_4 ^(100) )^2 +(C_6 ^(100) )^2 +...+(C_(100) ^(100) )^2 =?
find(C0100)2+(C2100)2+(C4100)2+(C6100)2++(C100100)2=?
Answered by mindispower last updated on 25/Oct/21
Σ_(k=0) ^(100) (C_(2k) ^(100) )^2   (1+ix)^(100) (1−ix)^(100) =Σ_(k=0) ^(100) C_(100) ^k (ix)^k Σ_(n=0) ^(100) C_n ^(100) (−ix)^n   =(1+x^2 )^(100) =Σ_(k=0) ^(100) C_(100) ^k (ix)^k .Σ_(n=0) ^(100) C_n ^(100) (−ix)^n   n+k=100  ⇒C_(100) ^(50) x^(100) =Σ_(k=0) ^(100) C_(100) ^k (ix)^k .C_(100−k) ^(100) (−i)^(100−k) x^(100−k)   ⇒Σ_(k=0) ^(100) C_k ^(100) .C_(100−k) ^(100) (−1)^k x^(100)   ⇒Σ_(k=0) ^(100) (−1)^k (C_k ^(100) )^2 =C_(50) ^(100)   (1+x)^(100) (1+x)^(100) =Σ_(k=0) ^(100) C_k ^(100) x^k Σ_(n=0) ^(100) C_n ^(100) x^n   C_(100) ^(200) x^(100) =Σ_(k=0) ^(100) (C_k ^(100) )^2   Σ(C_(2k) ^(100) )^2 =(1/2)Σ_(k=0) ^(100) ((C_k ^(100) )^2 +(−1)^k (C_k ^(100) )^2 )  Σ_(k=0) ^(50) (C_(2k) ^(100) )=(1/2)(C_(100) ^(200) +C_(50) ^(100) )
100k=0(C2k100)2(1+ix)100(1ix)100=100k=0C100k(ix)k100n=0Cn100(ix)n=(1+x2)100=100k=0C100k(ix)k.100n=0Cn100(ix)nn+k=100C10050x100=100k=0C100k(ix)k.C100k100(i)100kx100k100k=0Ck100.C100k100(1)kx100100k=0(1)k(Ck100)2=C50100(1+x)100(1+x)100=100k=0Ck100xk100n=0Cn100xnC100200x100=100k=0(Ck100)2Σ(C2k100)2=12100k=0((Ck100)2+(1)k(Ck100)2)50k=0(C2k100)=12(C100200+C50100)
Commented by mr W last updated on 26/Oct/21
great! thanks sir!
great!thankssir!
Commented by mindispower last updated on 26/Oct/21
withe pleasur sir  Have a nice day
withepleasursirHaveaniceday

Leave a Reply

Your email address will not be published. Required fields are marked *