Question Number 43907 by abdo.msup.com last updated on 17/Sep/18
$${find}\:\int\:\:\frac{{cos}^{\mathrm{2}} {x}\:−{sin}^{\mathrm{2}} {x}}{\mathrm{3}\:+{tan}^{\mathrm{2}} {x}}{dx} \\ $$
Commented by maxmathsup by imad last updated on 18/Sep/18
$${let}\:{I}\:=\:\int\:\:\frac{{cos}^{\mathrm{2}} {x}\:−{sin}^{\mathrm{2}} {x}}{\mathrm{3}+{tan}^{\mathrm{2}} {x}}{dx}\:\:\Rightarrow\:{I}\:=\:\int\:\:\frac{{cos}\left(\mathrm{2}{x}\right)}{\mathrm{3}+{tan}^{\mathrm{2}} {x}}{dx}\:{changement}\:{tanx}\:={t}\:{give} \\ $$$${I}\:=\:\int\:\frac{\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}{\mathrm{3}+{t}^{\mathrm{2}} }\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\:\int\:\:\:\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} \left(\mathrm{3}+{t}^{\mathrm{2}} \right)}{dt}\:\:{let}\:{decokpose}\:{F}\left({t}\right)=\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} \left(\mathrm{3}+{t}^{\mathrm{2}} \right)} \\ $$$${F}\left({t}\right)\:=\frac{{at}\:+{b}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:\:+\frac{{ct}\:+{d}}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:+\frac{{et}\:+{f}}{{t}^{\mathrm{2}} \:+\mathrm{3}} \\ $$$${F}\left(−{t}\right)\:={F}\left({t}\right)\:\Rightarrow\frac{−{at}\:+{b}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:+\frac{−{ct}\:+{d}}{\left({t}^{\mathrm{2}\:} \:+\mathrm{1}\right)^{\mathrm{2}} }\:+\frac{−{et}\:+{f}}{{t}^{\mathrm{2}} \:+\mathrm{3}}\:={F}\left({t}\right)\:\Rightarrow{a}=\mathrm{0}\:,{c}=\mathrm{0}\:{and}\:{e}=\mathrm{0}\:\Rightarrow \\ $$$${F}\left({t}\right)=\:\frac{{b}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:+\frac{{d}}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:+\frac{{f}}{{t}^{\mathrm{2}} \:+\mathrm{3}} \\ $$$${lim}_{{t}\rightarrow+\infty} {t}^{\mathrm{2}} {F}\left({t}\right)=\mathrm{0}\:={b}+{f}\:\Rightarrow{f}\:=−{b}\:\Rightarrow{F}\left({t}\right)=\frac{{b}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:+\frac{{d}}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:−\frac{{b}}{{t}^{\mathrm{2}} \:+\mathrm{3}} \\ $$$${F}\left({o}\right)\:=\frac{\mathrm{1}}{\mathrm{3}}\:=\:{b}\:+{d}−\frac{{b}}{\mathrm{3}}\:\Rightarrow\mathrm{1}=\mathrm{3}{b}+\mathrm{3}{d}−{b}\:=\mathrm{2}{b}\:+\mathrm{3}{d}\:\Rightarrow\mathrm{3}{d}=\mathrm{1}−\mathrm{2}{b}\:\Rightarrow{d}=\frac{\mathrm{1}−\mathrm{2}{b}}{\mathrm{3}} \\ $$$${F}\left({t}\right)\:=\:\frac{{b}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:+\frac{\mathrm{1}−\mathrm{2}{b}}{\mathrm{3}\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:−\frac{{b}}{{t}^{\mathrm{2}} \:+\mathrm{3}} \\ $$$${F}\left(\mathrm{1}\right)=\mathrm{0}\:=\frac{{b}}{\mathrm{2}}\:+\frac{\mathrm{1}−\mathrm{2}{b}}{\mathrm{12}}\:−\frac{{b}}{\mathrm{4}}\:\Rightarrow\mathrm{0}\:=\mathrm{6}{b}\:+\mathrm{1}−\mathrm{2}{b}−\mathrm{3}{b}\:\Rightarrow{b}+\mathrm{1}\:=\mathrm{0}\:\Rightarrow{b}=−\mathrm{1}\:\Rightarrow \\ $$$${F}\left({t}\right)\:=−\frac{\mathrm{1}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:+\frac{\mathrm{1}}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:+\frac{\mathrm{1}}{{t}^{\mathrm{2}} \:+\mathrm{3}}\:\Rightarrow \\ $$$${I}\:=−\int\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:+\:\int\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:+\int\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{3}}\:{but} \\ $$$$\int\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:={arctant}\:+{c}_{\mathrm{1}} \\ $$$$\int\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{3}}\:=_{{t}=\sqrt{\mathrm{3}}{u}} \:\int\:\:\:\frac{\sqrt{\mathrm{3}}{du}}{\mathrm{3}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:{arctan}\left(\frac{{t}}{\:\sqrt{\mathrm{3}}}\right)+{c}_{\mathrm{2}} \\ $$$${changement}\:{t}\:={tan}\theta\:{give} \\ $$$$\int\:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:=\:\int\:\:\:\:\:\frac{\mathrm{1}+{tan}^{\mathrm{2}} \theta}{\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right)^{\mathrm{2}} }{d}\theta\:=\:\int\:\:\frac{{d}\theta}{\mathrm{1}+{tan}^{\mathrm{2}} \theta}\:=\int\:{cos}^{\mathrm{2}} \theta\:{d}\theta \\ $$$$=\int\:\:\frac{\mathrm{1}+{cos}\left(\mathrm{2}\theta\right)}{\mathrm{2}}{d}\theta\:=\frac{\theta}{\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{4}}\:{sin}\left(\mathrm{2}\theta\right)\:=\frac{\mathrm{1}}{\mathrm{2}}{arctant}\:+\frac{\mathrm{1}}{\mathrm{4}}\:\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\:+{c}_{\mathrm{3}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:{arctant}\:+\frac{{t}}{\mathrm{2}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\:+{c}_{\mathrm{3}} \:\Rightarrow \\ $$$${I}\:\:=−{arctan}\left({t}\right)+{c}_{\mathrm{1}} \:+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:{arctan}\left(\frac{{t}}{\:\sqrt{\mathrm{3}}}\right)\:+{c}_{\mathrm{2}} \:+\frac{{arctant}}{\mathrm{2}}\:+\:\frac{{t}}{\mathrm{2}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\:+{c}_{\mathrm{3}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\:{arctan}\left({t}\right)\:+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:{arctan}\left(\frac{{t}}{\:\sqrt{\mathrm{3}}}\right)\:+\frac{{t}}{\mathrm{2}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\:+{c}\:. \\ $$$$ \\ $$
Commented by maxmathsup by imad last updated on 18/Sep/18
$${t}\:={tanx}\:\Rightarrow\:{I}\:=−\frac{{x}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:{arctan}\left(\frac{{tanx}}{\:\sqrt{\mathrm{3}}}\right)\:\:\:+\frac{{tanx}}{\mathrm{2}}\:{cos}^{\mathrm{2}} {x}\:+{c} \\ $$$${I}\:=−\frac{{x}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:{arctan}\left(\frac{{tanx}}{\:\sqrt{\mathrm{3}}}\right)\:+\frac{\mathrm{1}}{\mathrm{4}}{sin}\left(\mathrm{2}{x}\right)\:+{c}\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Sep/18
$$\int\frac{{cos}\mathrm{2}{x}}{\mathrm{3}+{tan}^{\mathrm{2}} {x}}{dx}\:\:\:\:\:\:{t}={tanx}\:\:\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }={dx} \\ $$$$\int\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}×\frac{\mathrm{1}}{\mathrm{3}+{t}^{\mathrm{2}} }×\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\int\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} \left(\mathrm{3}+{t}^{\mathrm{2}} \right)}{dt} \\ $$$$\int\frac{\mathrm{3}+{t}^{\mathrm{2}} −\mathrm{2}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} \left(\mathrm{3}+{t}^{\mathrm{2}} \right)}{dt} \\ $$$$\int\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }−\int\frac{\mathrm{2}{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\mathrm{3}+{t}^{\mathrm{2}} \right)} \\ $$$$\int\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }−\int\frac{\left(\mathrm{3}+{t}^{\mathrm{2}} \right)−\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\left(\mathrm{3}+{t}^{\mathrm{2}} \right)\right.}{dt} \\ $$$$\int\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }−\int\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }+\int\frac{{dt}}{\mathrm{3}+{t}^{\mathrm{2}} } \\ $$$${I}_{\mathrm{1}} −{tan}^{−\mathrm{1}} \left({t}\right)+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}{tan}^{−\mathrm{1}} \left(\frac{{t}}{\:\sqrt{\mathrm{3}}}\right)+{c} \\ $$$${I}_{\mathrm{1}} −{tan}^{−\mathrm{1}} \left({tanx}\right)+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}{tan}^{−\mathrm{1}} \left(\frac{{tanx}}{\:\sqrt{\mathrm{3}}}\right)+{c} \\ $$$${I}_{\mathrm{1}} −{x}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}{tan}^{−\mathrm{1}} \left(\frac{{tanx}}{\:\sqrt{\mathrm{3}}}\right)+{c} \\ $$$${now}\:{calculation}\:{of}\:{I}_{\mathrm{1}} \\ $$$$\int\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:\:\:{t}={tanx}\:\:\:\:{dt}={sec}^{\mathrm{2}} {xdx} \\ $$$$\int\frac{{sec}^{\mathrm{2}} {xdx}}{{sec}^{\mathrm{4}} {x}} \\ $$$$\int{cos}^{\mathrm{2}} {xdx} \\ $$$$\int\left(\frac{\mathrm{1}+{cos}\mathrm{2}{x}}{\mathrm{2}}\right){dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{x}+\frac{\mathrm{1}}{\mathrm{2}}×\frac{{sin}\mathrm{2}{x}}{\mathrm{2}} \\ $$$${so}\:{ans}\:{is} \\ $$$$\left(\frac{{x}}{\mathrm{2}}+\frac{{sin}\mathrm{2}{x}}{\mathrm{4}}\right)−{x}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}{tan}^{−\mathrm{1}} \left(\frac{{tanx}}{\:\sqrt{\mathrm{3}}}\right)+{c} \\ $$$$=\frac{{sin}\mathrm{2}{x}}{\mathrm{4}}−\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}{tan}^{−\mathrm{1}} \left(\frac{{tanx}}{\:\sqrt{\mathrm{3}}}\right)+{c} \\ $$$$ \\ $$$$ \\ $$
Commented by maxmathsup by imad last updated on 18/Sep/18
$${your}\:{answer}\:{is}\:{correct}\:{sir}\:{Tanmay}\:{thanks}. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 18/Sep/18
$${you}\:{are}\:{most}\:{welcome}… \\ $$
Commented by maxmathsup by imad last updated on 18/Sep/18
$${thank}\:{you}\:{sir}.. \\ $$