Question Number 80452 by abdomathmax last updated on 03/Feb/20
$${find}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\right)}{{x}^{\mathrm{4}} −{x}^{\mathrm{2}} \:+\mathrm{3}}{dx} \\ $$
Commented by abdomathmax last updated on 03/Mar/20
$${I}=\:{Re}\left(\int_{−\infty} ^{+\infty} \:\frac{{e}^{{i}\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\right)} }{{x}^{\mathrm{4}} −{x}^{\mathrm{2}} \:+\mathrm{3}}\:{dx}\right){let}\:{W}\left({z}\right)=\frac{{e}^{{i}\left(\mathrm{2}{z}^{\mathrm{2}} \:+\mathrm{1}\right)} }{{z}^{\mathrm{4}} −{z}^{\mathrm{2}} \:+\mathrm{3}} \\ $$$${poles}\:{of}\:{W}? \\ $$$${z}^{\mathrm{4}} −{z}^{\mathrm{2}\:} +\mathrm{3}=\mathrm{0}\:\Rightarrow{t}^{\mathrm{2}} −{t}\:+\mathrm{3}=\mathrm{0}\:\:\:\left({t}={z}^{\mathrm{2}} \right) \\ $$$$\Delta=\mathrm{1}−\mathrm{12}=−\mathrm{11}\:\Rightarrow{t}_{\mathrm{1}} =\frac{\mathrm{1}+{i}\sqrt{\mathrm{11}}}{\mathrm{2}} \\ $$$${t}_{\mathrm{2}} =\frac{\mathrm{1}−{i}\sqrt{\mathrm{11}}}{\mathrm{2}}\:\Rightarrow{W}\left({z}\right)\:=\frac{{e}^{{i}\left(\mathrm{2}{z}^{\mathrm{2}} \:+\mathrm{1}\right)} }{\left({z}^{\mathrm{2}} −{t}_{\mathrm{1}} \right)\left({z}^{\mathrm{2}} −{t}_{\mathrm{2}} \right)} \\ $$$$=\frac{{e}^{{i}\left(\mathrm{2}{z}^{\mathrm{2}} \:+\mathrm{1}\right)} }{\left({z}−\sqrt{{t}_{\mathrm{1}} }\right)\left({z}+\sqrt{{t}_{\mathrm{1}} }\right)\left({z}−\sqrt{{t}_{\mathrm{2}} }\right)\left({z}+\sqrt{{t}_{\mathrm{2}} }\right)} \\ $$$$\mid{t}_{\mathrm{1}} \mid=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{12}}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}\sqrt{\mathrm{3}}\right)\:=\sqrt{\mathrm{3}}\:\Rightarrow{t}_{\mathrm{1}} =\sqrt{\mathrm{3}}{e}^{{iarctan}\left(\sqrt{\mathrm{11}}\right)} \\ $$$${t}_{\mathrm{2}} =\sqrt{\mathrm{3}}{e}^{−{isrcran}\left(\sqrt{\mathrm{11}}\right)} \\ $$$$\int_{−\infty} ^{+\infty\:} {W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\left\{{Res}\left({W},\sqrt{{t}_{\mathrm{1}} }\right)\:+{Res}\left({W},−\sqrt{{t}_{\mathrm{2}} }\right)\right\} \\ $$$$=\mathrm{2}{i}\pi\:\left\{{Res}\left({W},^{\mathrm{4}} \sqrt{\mathrm{3}}{e}^{\frac{{i}}{\mathrm{2}}{arcran}\left(\sqrt{\mathrm{11}}\right)} \right)+{Res}\left({W},−^{\mathrm{4}} \sqrt{\mathrm{3}}{e}^{−\frac{{i}}{\mathrm{2}}{arcran}\left(\sqrt{\mathrm{11}}\right)} \right\}\right. \\ $$$${Res}\left({W},\sqrt{{t}_{\mathrm{1}} }\right)\:=\frac{{e}^{{i}\left(\mathrm{2}{t}_{\mathrm{1}} +\mathrm{1}\right)} }{\mathrm{2}\sqrt{{t}_{\mathrm{1}} }×\left(\underset{\mathrm{1}} {{t}}−{t}_{\mathrm{2}} \right)}\: \\ $$$${Res}\left({W},−\sqrt{{t}_{\mathrm{2}} }\right)\:=\frac{{e}^{{i}\left(\mathrm{2}{t}_{\mathrm{2}} +\mathrm{1}\right)} }{−\mathrm{2}\sqrt{{t}_{\mathrm{2}} }×\left({t}_{\mathrm{2}} −{t}_{\mathrm{1}} \right)}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:{W}\left({z}\right){dz}\:=\frac{{i}\pi}{{t}_{\mathrm{1}} −{t}_{\mathrm{2}} }\left\{\:\frac{{e}^{{i}\left(\mathrm{2}{t}_{\mathrm{1}} +\mathrm{1}\right)} }{\:\sqrt{{t}_{\mathrm{1}} }}\:+\frac{{e}^{{i}\left(\mathrm{2}{t}_{\mathrm{2}} +\mathrm{1}\right)} }{\:\sqrt{{t}_{\mathrm{2}} }}\right\} \\ $$$$….{be}\:{continued}…. \\ $$