Menu Close

find-cos-3-x-dx-




Question Number 165787 by daus last updated on 08/Feb/22
find  ∫cos^3 x dx ?
$${find}\:\:\int{cos}^{\mathrm{3}} {x}\:{dx}\:? \\ $$
Answered by aleks041103 last updated on 08/Feb/22
cos^3 x = cosx(1−sin^2 x)=  =cosx−cosxsin^2 x  ⇒∫cos^3 x dx=∫cosx dx − ∫cosx sin^2 x dx=  =sinx −∫(sinx)^2 d(sinx)=  =sinx−(1/3)sin^3 x+C
$${cos}^{\mathrm{3}} {x}\:=\:{cosx}\left(\mathrm{1}−{sin}^{\mathrm{2}} {x}\right)= \\ $$$$={cosx}−{cosxsin}^{\mathrm{2}} {x} \\ $$$$\Rightarrow\int{cos}^{\mathrm{3}} {x}\:{dx}=\int{cosx}\:{dx}\:−\:\int{cosx}\:{sin}^{\mathrm{2}} {x}\:{dx}= \\ $$$$={sinx}\:−\int\left({sinx}\right)^{\mathrm{2}} {d}\left({sinx}\right)= \\ $$$$={sinx}−\frac{\mathrm{1}}{\mathrm{3}}{sin}^{\mathrm{3}} {x}+{C} \\ $$
Answered by nurtani last updated on 08/Feb/22
∫ cos^3  x dx = ∫ cos^2 x ∙ cos x dx                           = ∫ (1−sin^2 )∙ cos x dx  let: u = sin x ⇒ (du/dx) = cos x ⇒ dx = (du/(cos x))  ∫cos^3  x dx = ∫ (1−sin^2  x)∙ cos x dx                           = ∫ (1−u^2 ). cos x∙ (du/(cos x))                           = ∫(1−u^2 ) du                           = u−(1/3)u^3  + C                           = sin x − (1/3) sin^3  x +C  ∴ ∫ cos^3  x dx = sin x − (1/3) sin^3  x + C
$$\int\:{cos}^{\mathrm{3}} \:{x}\:{dx}\:=\:\int\:{cos}^{\mathrm{2}} {x}\:\centerdot\:{cos}\:{x}\:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\int\:\left(\mathrm{1}−{sin}^{\mathrm{2}} \right)\centerdot\:{cos}\:{x}\:{dx} \\ $$$${let}:\:{u}\:=\:{sin}\:{x}\:\Rightarrow\:\frac{{du}}{{dx}}\:=\:{cos}\:{x}\:\Rightarrow\:{dx}\:=\:\frac{{du}}{{cos}\:{x}} \\ $$$$\int{cos}^{\mathrm{3}} \:{x}\:{dx}\:=\:\int\:\left(\mathrm{1}−{sin}^{\mathrm{2}} \:{x}\right)\centerdot\:{cos}\:{x}\:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\int\:\left(\mathrm{1}−{u}^{\mathrm{2}} \right).\:\cancel{{cos}\:{x}}\centerdot\:\frac{{du}}{\cancel{{cos}\:{x}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\int\left(\mathrm{1}−{u}^{\mathrm{2}} \right)\:{du} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{u}−\frac{\mathrm{1}}{\mathrm{3}}{u}^{\mathrm{3}} \:+\:{C} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{sin}\:{x}\:−\:\frac{\mathrm{1}}{\mathrm{3}}\:{sin}^{\mathrm{3}} \:{x}\:+{C} \\ $$$$\therefore\:\int\:{cos}^{\mathrm{3}} \:{x}\:{dx}\:=\:{sin}\:{x}\:−\:\frac{\mathrm{1}}{\mathrm{3}}\:{sin}^{\mathrm{3}} \:{x}\:+\:{C} \\ $$
Commented by daus last updated on 08/Feb/22
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *