Question Number 29038 by abdo imad last updated on 03/Feb/18
$${find}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{cos}\left({at}\right)}{\mathrm{1}+{t}^{\mathrm{4}} }{dt}. \\ $$
Commented by abdo imad last updated on 11/Feb/18
$${let}\:{put}\:{I}\left({a}\right)=\:\underset{−\infty} {\int}^{+\infty} \frac{{cos}\left({at}\right)}{\mathrm{1}+{t}^{\mathrm{4}} }{dt}\:={Re}\left(\int_{−\infty} ^{+\infty} \:\:\:\frac{{e}^{{iat}} }{\mathrm{1}+{t}^{\mathrm{4}} }{dt}\right){let} \\ $$$${introduce}\:{the}\:{complex}\:{function}\varphi\left({z}\right)=\:\frac{{e}^{{iaz}} }{\mathrm{1}+{z}^{\mathrm{4}} } \\ $$$${poles}\:{of}\:\varphi?\:{z}^{\mathrm{4}} =−\mathrm{1}\:\Leftrightarrow{z}^{\mathrm{4}} ={e}^{{i}\pi} \:\:{if}\:{z}=\:{r}\:{e}^{{i}\theta} \Rightarrow \\ $$$${r}=\mathrm{1}\:\:{and}\:\mathrm{4}\theta\:=\left(\mathrm{2}{k}+\mathrm{1}\right)\pi\:\Rightarrow\theta=\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{4}}\:{so}\:{the}\:{poles}\:{of} \\ $$$$\varphi\:{are}\:{z}_{{k}} ={e}^{{i}\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{4}}} \:\:{and}\:{k}\in\left[\left[{o},\mathrm{3}\right]\right] \\ $$$${z}_{\mathrm{0}} =\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \:\:\:\:,\:\:{z}_{\mathrm{1}} ={e}^{{i}\frac{\mathrm{3}\pi}{\mathrm{4}}} \:\:\:\:\:,\:{z}_{\mathrm{2}} ={e}^{{i}\frac{\mathrm{5}\pi}{\mathrm{4}}} \:\:\:\:,\:{z}_{\mathrm{3}} ={e}^{{k}\frac{\mathrm{7}\pi}{\mathrm{4}}} \\ $$$$\varphi\left({z}\right)=\:\frac{{e}^{{iaz}} }{\left({z}−{z}_{\mathrm{0}} \right)\left({z}−{z}_{\mathrm{1}} \right)\left({z}−{z}_{\mathrm{2}} \right)\left({z}−{z}_{\mathrm{3}} \right)} \\ $$$$\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}=\mathrm{2}{i}\pi\left({Re}\left(\varphi,{z}_{\mathrm{0}} \right)\:+{Re}\left(\varphi,{z}_{\mathrm{1}} \right)\right) \\ $$$${Res}\left(\varphi,{z}_{\mathrm{0}} \right)=\:\frac{{e}^{{iaz}_{\mathrm{0}} } }{\mathrm{4}{z}_{\mathrm{0}^{} } ^{\mathrm{3}} }\:=−\frac{\mathrm{1}}{\mathrm{4}}{z}_{\mathrm{0}} \:{e}^{{iaz}_{\mathrm{0}} } \\ $$$${Res}\left(\varphi,{z}_{\mathrm{1}} \right)=\:\frac{{e}^{{iaz}_{\mathrm{1}} } }{\mathrm{4}{z}_{\mathrm{1}} ^{\mathrm{3}} }=−\frac{\mathrm{1}}{\mathrm{4}}{z}_{\mathrm{1}} \:{e}^{{iaz}_{\mathrm{1}} } \:\:\:{but}\:{z}_{\mathrm{1}} ={z}_{\mathrm{0}} ^{−} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}=\mathrm{2}{i}\pi\left(−\frac{\mathrm{1}}{\mathrm{4}}\right)\left(\:{z}_{\mathrm{0}} {e}^{{iaz}_{\mathrm{0}} } \:+{z}_{\mathrm{0}} ^{−} \:{e}^{{iaz}_{\mathrm{0}} ^{−} } \right) \\ $$$$=−\frac{{i}\pi}{\mathrm{2}}\left(\:{z}_{\mathrm{0}} {e}^{{iaz}_{\mathrm{0}} } \:+{z}_{\mathrm{0}} ^{−} \:{e}^{{iaz}_{\mathrm{9}} ^{−} } \right)….{be}\:{continued}…. \\ $$