Menu Close

find-cos-lnx-dx-




Question Number 41514 by maxmathsup by imad last updated on 08/Aug/18
find   ∫  cos(lnx)dx
$${find}\:\:\:\int\:\:{cos}\left({lnx}\right){dx}\: \\ $$
Answered by alex041103 last updated on 09/Aug/18
We know that cos(θ)=Re(e^(iθ) )  We will assume xεR.  ⇒∫cos(ln(x))dx=Re(∫e^(iln(x)) dx)=  =Re(∫x^i dx)=Re((x^(1+i) /(1+i)))=(x/2)Re(x^i (1−i))=  =(x/2)Re((cos(ln(x))+isin(ln(x)))(1−i))=  =(x/2)Re(cos(ln x)+sin(ln x)+i(...))=  =(1/2)x(sin(ln x)+cos(ln x))  We can simplify further by using  sin α + cos α = (√2)sin(α+(π/4))  ⇒∫cos(ln x)dx=((xsin((π/4)+ln(x)))/( (√2))) + C
$${We}\:{know}\:{that}\:{cos}\left(\theta\right)={Re}\left({e}^{{i}\theta} \right) \\ $$$${We}\:{will}\:{assume}\:{x}\epsilon\mathbb{R}. \\ $$$$\Rightarrow\int{cos}\left({ln}\left({x}\right)\right){dx}={Re}\left(\int{e}^{{iln}\left({x}\right)} {dx}\right)= \\ $$$$={Re}\left(\int{x}^{{i}} {dx}\right)={Re}\left(\frac{{x}^{\mathrm{1}+{i}} }{\mathrm{1}+{i}}\right)=\frac{{x}}{\mathrm{2}}{Re}\left({x}^{{i}} \left(\mathrm{1}−{i}\right)\right)= \\ $$$$=\frac{{x}}{\mathrm{2}}{Re}\left(\left({cos}\left({ln}\left({x}\right)\right)+{isin}\left({ln}\left({x}\right)\right)\right)\left(\mathrm{1}−{i}\right)\right)= \\ $$$$=\frac{{x}}{\mathrm{2}}{Re}\left({cos}\left({ln}\:{x}\right)+{sin}\left({ln}\:{x}\right)+{i}\left(…\right)\right)= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{x}\left({sin}\left({ln}\:{x}\right)+{cos}\left({ln}\:{x}\right)\right) \\ $$$${We}\:{can}\:{simplify}\:{further}\:{by}\:{using} \\ $$$${sin}\:\alpha\:+\:{cos}\:\alpha\:=\:\sqrt{\mathrm{2}}{sin}\left(\alpha+\frac{\pi}{\mathrm{4}}\right) \\ $$$$\Rightarrow\int{cos}\left({ln}\:{x}\right){dx}=\frac{{xsin}\left(\frac{\pi}{\mathrm{4}}+{ln}\left({x}\right)\right)}{\:\sqrt{\mathrm{2}}}\:+\:{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *